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PREFACE

Contract F 49620-77-0130 of the Air Force Office of

Scientific Research, beginning September 1, 1977, was specifically

©eeman

directed toward solving problems of elastic and viscoelastic wave

scattering and diffraction with applications to the silo and its :

related problems.

The Contract has been successfully executed at the Aldridge ;

e - v

Laboratory of Applied Geophysics. This Final Report reflects the

s

accomplishments of the Contract, including doctoral dissertations

to be published and unpublished papers.
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I am grateful to Mr. William Best of the Air Force Office
of Scientific Research for monitoring the contract, and Drs. Ker
Thomson, Gerry Cabaniss, and Frank Crowley for their interest in
the project. I wish to acknowledge Ms. Linda Ripps, who typed this

report most patiently.

John T. Kuo
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GENERAL INTRODUCTION

W
Under the Air Force Clontract, AF-49620-77-C-0130, "Elastic

and Viscoelastic Wave Scattering and Diffractions," the main
objective of the research was to study the problem of two- and

three-dimensional wave scattering and diffraction in elastodynamics

and viscoelastodvnamics. Presently available analytical techniques

for solving wave propagation problems are useful only for simple

cases. In practice, the presence of inhomogeneities and irregular

boundary conditions defies analytical solutions. One of the best

numerical techniques suitable for solving wave propagation in a

complex geological medium, such as the problem of the ground response

to seismic disturbances in alluvial valleys, is the method of com-

bining the finite element method (FEM) in space and the finite

differences method (FDM) in time. The advantages of using the finite

element method in space are:

(1) allowing for almost any type of static, dynamic, and thermal
loading to be applied.

(2) relatively easy to apply boundary conditions,

(3) its flexibility in modeling irregular geology and topography,

(4) its distribution of errors, which are averaged over the elements |

/¢
throughout the domain in question.

—
The advantage of using the explicit finite differences method in time F
integration is that solutions so obtained are generally conditionally

stable, and fast convergent to yield solutions which are only simple

products and vector additions.




However, the physical insight to the scattering and diffraction ’

phenomena only can be gained through analytical approaches or
physical modeling studies; the interpretation of the numerical solu-
tions must base on the fundamen*al understanding of the scattering and k
diffraction phenomena. Therefore, our approaches to solving the com-
plex scattering and diffraction problems have been oriented toward:
(1) to solve practical problems by numerical methods.

(2) to gain insight to the numerical solutions to practical problems

by analytical and physical modeling studies.

As for the numerical methods, we emphasize the research on the finite

element formulation and computer programming. We have completed the f,
finite element algorithm for transient elastic and viscoelastic wave
scattering and diffraction problems in two and thres dimensions and, .
as a by-product, the finite element elastostatic algorithm for static
and quasistatic loading problems.

So far as the effect of damping on the elastic wave propo-
gation is concerned, the computer codes for the two- and three-dimen-
sional Rayleigh type of damping have been written and successfully
tested. However, these original computer codes have followed the
conventional "block-by-block" format that require an enormously large
in-core storage and a large amount of computing time for solving geo-
logically practical problems.

Therefore, we have also been working on the areas of: Li
(1) overcome the practical difficulties of using large in-core storage.

(2) sparse matrix without calculating zero-matrix elements to save the

computing time. | ]




(3) the basic problem of convergence and stability to obtain a good :

solution without taking more computing time than actually re- i

;

quired. §

(4) the undesirable reflections from the artificial boundaries. |

The finite element algorithm for elastic waves has been

successfully applied to solve the problem of the transient seismic
response of an elastic whole-space, an elastic half-space, and a f
!

layered elastic half-space due to a finite cylindrical cavity source.

Only by a considerable reduction of in-core storage and
saving of computing time would it be possible to perform an extensive
parameter-s - ly of more realistic geological problems as shown in :
Figure 1.

In the area of analytical studies, we have been exploring
one of the most attractive analytical methods, i.e. the high-order ;»
perturbation method. The existence of two different types of elastic
waves, viz. compressional and shear waves in elastodynamic boundary
value problems, has frustrated many investigators to solve more
realistic problems. In the perturbation method, we are able to replace
the two different wave numbers for P-wave and S-wave by their root-
mean-square (RMS) values so that there will be only one single wave
number involved. The previous RMS perturbation solutions developed by
Pao and Thau (1967) are only up to the order of two. We have now ‘
extended the method to the higher-order solutions, through the general .
recurrence formulas. Moreover, we have applied the newly developed

perturbation method to solve one of the long-standing elastodynamic

wedge problems and obtained very encouraging results. In order to
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gain further insight to wave scattering and diffraction problems,

three-dimensional physical model experiments have been performed
at the Aldridge Laboratory of Applied Geophysics to study the |
acoustic-elastic wave scattering and diffraction by a vertical

elastic cylinder immersed in a fluid due to a transient acoustic

point source.

Physical insight into these problems, both analytically

and experimentally, has been invaluable in interpretation of the

finite element results.




I. FINITE ELEMENT FORMULATION AND COMPUTER PROGRAMS

FOR ELASTIC AND VISCOELASTIC WAVE SCATTERING

AND DIFFRACTION PROBLEMS

——— e .




. g—
’
ABSTRACT
]
. The three-dimensional finite element for both elastic and
viscoelastic wave scattering and diffraction, based on the principle
) of virtual work,has now been completed for solving transient elasto-

and viscoelasto-dynamic problems, as well as elasto- and viscoelasto-

static problems. Computer programs for the finite element formula-

tion are developed and tested.
The conventional "block-by-block" format used in the computer
programs has been improved in order to save the in-core storage and

computer time. Stability condition and convergence criteria of the

finite element in space and the finite differences in time have been

examined. The computer programs developed under the Contract are

now ready and have been submitted to AFGL for their use.




’ FINITE ELEMENT FORMULATION

’ Based on the principle of virtual work, we have now
! completed the three-dimensional finite element formulation for
viscoelastic wave scattering and diffraction to complement that
|
] for elastic wave scattering and diffraction duve to a transient !
seismic disturbance, as reported in the Final Report of an earlier !
contract AFOSR-76-2968, "Numerical and Analytical Solutions to ;
’ Elastodynamic Problems"”. The general procedure for using the finite '

element method in solving elastodynamic problems in cosntinuum mechanics

~

includes idealization of the problem, space discretization of finite

i ks

elements, and formulation of the set of simultaneous equations to be
solved. For viscoelastic waves, the equations of motion for elasto-
dynamics must include a term to account for energy dissipation. 1
Usually this mechanism takes the form of viscous damping, which is
linearly proportional to velocity. Hence, the equations of motion j

for viscoelastodynamics are:
(1) ml(a} + (] (u} + (k] {u} = (£(t)}

where {u}, {ua}, {ﬁ} are the displacement, velocity and acceleration P
vectors of the finite element assemblage, and

[m] = the assembled mass matrix.

[c] = the viscous damping matrix.

)

{k] = the assembled structural stiffness matrix.

{f(t)} = the external time-dependent vector load vector.
» 2




b

-

It is obvious that equation (1) reduces to the equations
of motion for elastodynamics as {¢] = 0. Equation (1) states that,
in principle, static equilibrium at time t, which includes the
effects of inertia force, elastic force and damping force, is
reached. While in static analysis, one simply neglects the inertia
and damping effects in equation (1).

The free vibration equilibrium equation for the undamped

system is well-known as follows:

(2) m] {u} + [k] {u} =0

Assume that

(3) {ul} = {9} T(t)
where
(4) T(t) = A sin 2t + B cos w t

{¢} time dependent shape vector, and

A and B = arbitrary constants. Differentiating equation (3)

twice with respect to time t, we have

(5) @} = {8} T(t) = - w? {6} T(t)




— e

R 1 -

Equation (2) vields

(6) (k] = w2 [m}) {o} =0

In order to hsve a non-trivial solution to this equation, the

following condition must be satisfied

(7) | [kl = w?[m] | = p(w?) =0

This leads to the classical eigenvalue problem. The solution to
this equation is w=w n=1,2,3...... , N in which N is the number
of the modes. w are the natural angular frequencies of the
system. The shape vector function (¢} can be obtained by solving

equation (6) for each value of w, giving

(8) (k] {6} = w2 [m} {o}

for the n-th mode of vibration.
Superposition of the response for all modes gives

N

(9) {fur = {¢n} {Tn(t)} = [®] {T(t)}
n=1

where the n-th column in(®] contains the shape vector {¢n}

Substituting equation (9) into (1), we have

(10) ml (0] {T} +[c] [®] {T} + (K] [8] {T} = (£(£)}

e

o el

™
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T
Premultiplying equation (10) by {¢]~, we have

(11) 01T m 101 (1} + (01T (el (o] (7} + (01T [kl (o]
= 01T {£(t)} = (F(t)}

The Orthogonality conditions are:

|
o

(o )T tm) (o) =
(12) if m#n

Il
o

{o)T K] (o)

Caughey (1960) pointed out that:

a) Equation (1l1) will be decoupled if, and only if, [@]T[C] (4] is
diagonal,

b) if [@]T[C][Q] is diagonal, the damped system will have normal

modes, which are identical with those for the undamped system, and

¢) if a damping matrix [C]=[¢]T[c][¢] has the form
N-1 -1 yq b

(13) [C] = M I a ([M] [K])
b=0

the damped system will have classical normal modes.

Now, if the damping matrix also satisfies
(14) {s }T [e] {¢.} =0 for m#n
m n’

and equation (11) becomes

(15) Mn Tn + Cn Tn + Kn Tn = qn(t)

S b e o o




where

_ T
M= (o ) Imlie}
(16) C = {¢ 1T [cl{o.}
n n n

K, = (o) [kI{s)

Since Mn’ Cn’ Kn are scalars, equation (1) is decoupled to N linear

equations. Each of these equations represents the equation of motion

of a single-degree~of-freedom system. The damping constant can be

so chosen that

(17) C

#

2 ) @ mn

(18) 0y v (Kn/Mn)

where An= the damping ratio for the n-th mode.
W= the natural angular frequency for the n-th mode. Then, the

damping ratio in each mode, xn can be related to the natural angular

frequency of that mode by

1 N-1 2b-1
(19) A= — L a, w
R 3 p=g PP

In equation (13), if N=2,

(20) [c] = a, M] +a1 [K)

il

-
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3 »
This form was first proposed by Ravleigh. Equation (19) becomes
]
1 aO
(21) A= —(— +a, w_)
n 5 wn l1 " n
. Therefore, Rayleigh damping can be considered as a special case of
Caughey damping. The constants aO and al can be determined by any
two arbitrary conditions. If these two conditions are so chosen k
: that the damping ratios are specified for the first two modes, then
2WAaAy = waA,)
(22) a_ = jl 1w2
2 1
( /wl - /wz )
A2 - M
2( Aul ﬁ»z)
(23) a, = ;
1 w5 Al 1
( ﬂnl - /w2 )
The procedure described above involves the calculation of the L?
frequencies for the first two modes.
! Another procedure for determining the values of ao and al ]
]
;1 is to specify the damping ratio at the frequency for which the damping
is a minimum, usually the fundamental frequency of the system. Then L
we have
{
(24) ao = wl Al
« (25) al = )‘l/wl
¢




Solving the eigenvalue of the equation

(N | (k] = w? [m] |=p?) =0

is equvalent to calculating the roots of the polynomial p(wz), which
has the order equal to the order of [k] and [m] that are usually a
very large number. Therefore, an iteration solution method has to be

used. The time integration scheme with damping effect then is

(26) {u(t+at)}

{u(t)} + {d(e)}ae

(27) {a(e+ar)} = {u(t)} - MI7Y [K] {u(t+ae) dat

- M Yeltue)tae + 7Y (R} At

Ty
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TEST

Based on the foregoing formulation, we have developed the
computer programs. As an initial test of our three-dimensional program,
we have studied the problem of wave propagation in a viscoelastic
rectangular bar with one end of the bar fixed. The free end of the
bar is subjected to a uniform external force load. The simulated
forcing function is that of the sinusoidal type, using a four time-
step of increasing (or decreasing) time. The maximum of the magnitude
for the forcing function for the test case is lOlo dynes. In this
test problem, we used only 20 hexahedron elements., Use of symmetry
is made to reduce the size of the problem and the boundary displace-
ments are prescribed in a manner shown in Figure 2. The elastic
constants used are: Poisson's ratio = 0.25, Young's Modulus = 4.5x10lo
dynes/cmz. The dynamic damping behavior of unconsolidated earth
materials primarily depend on the parameter of damping ratio An,
which must be determined by in-situ experimental measurements, On
the basis of spectral studies of the damping behavior of unconsolidated
earth materials, the U.S. Atomic Energy Commission Regulatory Guide,
Directorate of Regulatory Standards indicates that the reasonable
values of parameter An are approximately in the range of 0.005 to 0.1l.
Figures 3 and 4 show the displacement-component responses on the

surface of the bar, the observation point is located at the nodal point




of 71 as shown in Figure 2, for the three cases:

] (i) Response without damping.

(ii) Response with a damping ratio Ay = 0.02.

i
o
(o]
w

(iii) Response with a damping ratio A
H The responses of Ux and Uy are exactly the same due to symmetry. 3
In Figures 3 and 4, the magnitudes of Uy, (or Uy) and U, are drastically

reduced for both the cases of A = 0,05 and = 0.02. 1In this particu-

'S lar example, there is a slight phase change in U, (or Uy) component,

while the phase change in the U, component is apparent. ﬂ

™
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MODIFYING ELASTODYSTATIC AND ELASTODYNAMIC

FINITE ELEMENT COMPUTER PROGRAMS FOR

REDUCING THE IN-CORE STORAGE

As we mentioned before, our original finite element computer
»rograms have been developed in the conventional "block-by-block”
format so that a large in-core storage for the global stiffness
matrix was required and a large amount of computing time was also re-
quired. TIf we use the "block-by-block" format, it is a formidable
task to handle even a small practical problem of a more realistic
geological structure by the present art of the largest digital
computers now available.

In the past year, we have substantially modified our three-
dimensional elastcodynamic and elastostatic computer programs for
solving more realistic geological problems. We have overcome many

serious difficulties of the finite element method for both elasto-

dynamic and elastostatic problems.

(A} Elastodynamics

The final form of the finite elemeri formul®-:t*ion of the

equations of motion in elastodynamics is

(28) Ml {u} + (K] (u} = {(F(t)}

A Gaussian elimination algorithm is generally used to solve a
discrete system of equations. However, matrices [K] and [M] must

be in-core stored in the calculation that creates stringent limitation

o




g

ST

on the total number of equations to be solved.

o G

) Because the matrix [K] is usually sparse, a special ordering

of the nodal points can produce a matrix [K], which is tightly

|

banded about the main diagonal. 1In our original version of the Q‘
[ ] Aldridge Finite Element Algorithm (AFEA), we used the conventional |
’
t
i

"block-by-block"” format with the number of equatiocns per block

.
known, the stiffness matrix is assembled in one block at a time and &
1

i ) is stored on the scratch disk. This "block-by-block" computer
program requires (2B, B) words in-core for [K], where B is the
half-band width. For example, for a three-dimensional 50x5Jx50

) element structure, we would have to solve some 397,953 simultaneous
equations for the assembly stiffness matrix with a half-band width
»f B=795%9, and an in-core storage of 2x7959x7959x4=506,766 kilobytes.
The banded and blocked character of [K] is as shown in Figure 5.

The assembly mass matrix of the structure is formulated by lumping

the weighted element masses at the nodal points of the elements.
The mass of an element is weighted-distributed to the nodal points. 4
In the present modified version of AFEA, taking the advantage of
using the lumped mass matrix, and the finite differences time inte-
gration, we thus avoid the conventional Gaussian elimination

algorithm. Instead, we solve the following equations,

™~

(29) u(t+at)}y = {A(t)}y + (lu(t)}at)

(30) Gle+ oty = @m)g + ] "L K] fu(t4at) } )y

+

(MY @) at)
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where N = the total number of equations.

We operate only on the product { [M]-l [K] {u(t+ 28)} )

N

Thus, we need only "“N" words in~core, no matter how large the half-
band width B may be. Figure 6 shows a comparison of the in-core
storage for the global stiffness matrix required between the original
and present modified versions cf AFEA.

Additionally, the present modified AFEA codes save accounting
time, since only the non-zero matrix elements in [K] are calculated.
The blocked matrix [K] is sparse. The larger is the half-band width
B, the more sparse the blocked [K] matrix will be. 1In the three-dimen-
sional case, the maximum non-zero elements in each row are 81 for
hexahedron elements. In two-dimensional case, the maximum non-zero
elements in each row are 18 for quadrilaceral elements. In other
words, there are (7959-81) zero matrix elements in each row for the
50x50x50 element~structure. Therefore, in using the present modified
AFEA, the computing time can be reduced for solving larger element-
structures without the increasing I/O time. Table I gives the com-
parison of the accounting time for the original and present modified
versions of AFEA in solving both two-dimensional and three-dimensional
elastodynamic problems on an IBM 360/91.

As our first example, in using the modified three-dimensional
elastodynamic program of AFEA, we studied the classic Lamb's problem,
i.e., the problem of a homogeneous, isotropic, elastic half-space,
subjected to an external vertical force on the free surface, which
is assumed to be a bell-shaped function. In this test problem, we

used 12 hexahedron elements in each dimension (Figure 7). Use of
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Figure 7. Finite Element Mesh for Lamb's Problem.
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symmetry is made to reduce the size of the problem. The symmetric

boundary conditions in Figure 7 are:

0 on 0BDC

(=]
(]

(=]
]

( on OBFE

In addition we used Smith's technique (1974) to eliminate the single
boundary reflections by superimposing the solutions of free-artifi-
cial-boundaries and rigid-artificial-boundaries problems. Although
the technique fails, when multi-reflections occur at the same
boundary, and has the disadvantage of requiring 2n solutions for the
n number of non-reflecting boundaries, we prefer this method at
present because it offers the advantages of perfect elimination, i.e.
independent of both incident angle and frequency. The Smith's
technique is particularly advantageous for three-dimensional finite
element problems since the number of elements required is reduced

by 8. Figure 8 shows the superposition of the solutions of the

free and boundary problems. Figure 9 shows the comparison of the
finite element and the analytical solutions. The test results are
highly accurate with the displacement component being within about

2 % of the analytical value.

(B) Elastostatic Case

For the elastostatic case, a conventional Gaussian elimination

¢

i
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is needed. In the new version of AFEA, we developed a small band
solver that can be used with tape-storage to solve a large system
of linear equations. Instead of requiring the in-core storage of
(2B, B) words for [K] in the orginal version, the regquired in-core
storage now for [K] reduces to (2 x NF, B) words where NF is the
numbers of degree freedom, that is, an in-core storage of (6, B)
words for the three-dimensional case and of (4, B) words for the
two-dimensional case. Figure 10 gives a comparison of the in-core
storage for the global stiffness matrix required in the original
and new modified versions. It is expected that the large number

of calls to tape requires a large amount of I/O time.
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STABILITY CONDITION AND CONVERGENCE CRITERIA

OF THE FINITE ELEMENT INM SPACE AND

THE FINITE DIFFERENCES IN TIME

Ever since the finite element method emerged in various
branches of engineering and physics, many investigators have
attempted to establish the convergence criteria and the stability
condition techniques for the FEM in space and the FDM in time.

Based on the principle of virtual work, the FEM involves
the whole region of interest, which is discretized into a finite
number of subregions. The accuracy of the analysis depends mainly
on the number of elements used, and on the nature of the assumed
displacement functions with the elements. The accuracy of analysis
can be increased by using more elements in the representation of
the structure provided that the elements satisfy certain conver-
gence criteria, that is, the elements must be complete and com-
patible.

Whether a specific element is complete and compatible
depends on the formulation that must be studied individually. The
aim in the numerical integration of the finite element system equi-
librium is to evaluate a good approximation to the actual dynamic
response of the structure under consideration. The choosing time
step must correspond to the smallest period in the system which
could mean very small time steps.

In the AFEA, i.e., finite element in space and finite differ-

ences in time, we found that the elements of 4CST (four constant




strain triangles) for two-dimensional cases and 5CST (five constant
strain tetrahedra) for three-dimensional cases in space integration
are complete and compatible, and central differences of time steps
in time integration are adequate. It follows that the element size
Ax, Ay, or Az in comparison with the wavelength of wave propagation
plays a crucial role in convergence. As in time integration, the
number of operations required is directly proportional to the number
of time steps required for the solution. The selection of an appro-
priate time step At in time integration is of great importance in

obtaining a stable solution. On one hand, the finite element size

and the time step must be small enough to obtain a stable solution,
and, on the other hand, the element size must not be smaller than
necessary, because this would mean that the computation is more
costly and requires more in-core storage than actually needed.
Choosing a time step smaller than necessary not only increases the
cost of calculation; it also causes an inaccurate result. A common
mistake is choosing a coarse grid of elements and a small time

step. We have tested the convergence criteria and stability condition

by using one of our computer program codes for the two-dimensional plane
( strain elastodynamic calculation, again the best case is that of

Lamb's problem. The following forcing function is used,

%— [H(t-At ) - H(t- 3 at)] L

F(t) 2

} (31) + —3%3—[ At2 = 2(t-At )2] (H(t-3 A1) -~ H(t - 4 AT)]

+ —A%r [(t - 4 A1) 2] [H(t - 4 At+ 46)]

Ll

27
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in which the factor At controls the rise of the step. We found
that with various element sizes (4Ax, 4y), various time steps (At),
and various forcing function sharpness factors (At), the present
finite element model requires the ratio § = VpAt/As be greater
than 1.2 and At be greater than 10 At, where Vp is the com-
pressional velocity and As is the smallest width of the element in
the finite element assemblage. As an estimate of As is required,
it appears that if the average period is Tn’ As would have to be
about Tan/IO. Figure 11 gives the finite element mesh of the twc
dimensional Lamb's problem. In Figure 11, use of symmetry is made
to reduce the size of the problem. Although the grid sizes used
are regular, both element size and shape may vary. Synthetic
seismograms at various nodal points along the free surface have
been generated with £ = 1.5 and AT = 12At (Figure 1l2a and 12b).
Figure 13 shows the diagram of the particle motion at an observation
point on the free surface. The characteristic elliptic retrograde

particle motion of Rayleigh wave is clearly identified.

28
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Figure 13. Diagram of Particle Motion at Observation
Point 21.
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ABSTRACT
8
The root-mean-square perturbation method for solving wave
scattering and diffraction introduced by Thau and Pac has been
| 4 further developed to include the higher order terms. The method is b

particularly suited for solving, for example, the classic problem

of wave propagation in a wedged medium. As an illustration, the ﬂ

formal solutions to the prcblem of SH-wave propagation in a

wedged half-spce are obtained. Future numerical evaluation of the

solutions is in order.
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INTRODUCTION

In solving elastodynamic boundary value problems, the
dual existence of two different types of elastic waves, compres-
sional wave and shear wave, even in a homogeneous, isotropic,
elastic solid body has frustrated many theoreticians to solve some
practical, as yet complex problems in seismology. For example,
the use of Kontorowich-Lebedev transform will yield a solution to
the single scalar field problems of acoustic, SH- or electromag-
netic wave propagation. However, the use of Kontorowich-Lebedev
transform is no value in cbtaining formal solutions in the elastic
solid wedge problem of P and S wave propagation.

Thau and Pao (1967) introduced a perturbation method, in
which the two different wave numbers in the two steady state wave
equations are replaced by their root-mean-square (RMS) average
value. All the perturbed wave equations and boundary conditions
involve only the RMS value, that is, there is only one single
wave number involved. The perturbation parameter, which is a small
quantity, is the difference of the actual wave number and the RMS-
value. They generated the perturbation solutions of the first
three orders, viz. the zeroth, the first, and the second order. They
also illustrated the application of this perturbation method to solve
elastic wave diffraction problems. Based on their two-term pertur-
bation solutions of the zeroth, and the first order, the results are
in good agreement with the known exact near field solutions at low

frequencies.
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In this paper, we present the recursive formulas, which
can generate any higher order solutions for this RMS-value pertur-

bation method.
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HIGH-ORDER SOLUTIONS
3}
Thau and Pao showed that, for the steady state motion, the
two Helmholtz equations for elastic waves are
2
(L) (7% kP w = 0
2 2
¢ (2) (v +k2)w2=0
where V2 is the Laplacian operater.
t
(3) k1=w/vl
\ (4) k2=‘m/v2
w is the frequency, vy and v2 are velocities and v2>vl. For the .
( SH-wave problems in two media, vy and v2 are the shear velocities, 4
|
E
and vy and w2 are the z-~direction displacement components for the gj
two different media, respectively. For waves in an elastic soliqd, ‘
4
4
¢ vy is the shear wave velocity, v, is the compressional wave velocity, ;‘
and Wy and w2 are the displacement potentials. For simplicity and i
without loss of generality, here only one component of the vector L
c displacement potentials is considered. For example, for the plane- :j
i
' strain problems, the displacement vector is i#
1 (5) - . 1
) NS Wr JXewW
4
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Omiting the factor exp(-iwt), we can easily find the equivalencies

for the acoustic and electromagnetic waves.

Let
2 2 2
(6) k = (k1 + k2 /2
7) k2 = k21 + 2¢)
(8) k22 = k%1 - 2¢)
where
k2 - k2
1 2
(9) £ = > 5
2(k1 + k2)

is the perturbation parameter

Assume that

_ (o) (1) 2_(2) e, n (n)__ .. ...
(10} w, o= oWy + e W, + € w, + + € Wy +

_ (o) (1) 2 (2 ... notm) oo
(11) w2 = w, + € wo + € w, + + € w2 +

Substituting (7), (8), (10), and (1l) into (1) and (2) and
equating coefficients of like powers of the n-th order wave equations,

we heve:

(12) (

b

w3

o




[

+
354
=

(13) (VS + k° )

withn=1,2,3,...0000...

For n = 0, the wave equations become:

(14) (72w dwi® =0
(15) ( V2 + k2 )w2(°) -0

For higher orders (n # 0), the total solutions of (12) and (13)

include two parts:

(n) _ _(n) (n)
(16) W, = Wi + w1p
(n) (n) (n)
(17) W = W, + w2P

where W{n)and w(n)are the complementary solutions, which satisfy the

2c

homogeneous equations




[P

e

(n) (n)
wlp and w2p

from the lower order solutions and

geneous equations:

are the particular solutions, which can be obtained

satisfy the following inhomo-

2, .2, (n) _ _ , .2 (n-1) ‘
(20) ( V7 + & )wlp = 2 k7w )
(21) R IR Sk P
2p 2

The particular solutions for the first, the second, and the third | ]

orders are:

(1) (o)
(22) wlp =X Zwl
1y _ _ . (o)
(23) w2p = { zwz
(2) _ .o, (1) (1) 1 2 2 (o)
(24) wlp = £ Zwl wlp + - kK" r Wy
(2) _ .o L (1) 1 2 2 (o)
(25) wzp = -’1\’.“ Z‘wz +w2p +———2 kK r w,
1
(3) _ . 2y, (2)y, (1), _ (2) 2 2 (1)
(26) wlp = -3-'{£ Z[Zw1 Wi Wy ] 4w1p + % k'r Wy }
1
(3) _ . 2y, _(2)_ (1) (2) 2.2 (1)
(27) w2p = - -3-{5 X[sz +w2c Voo ]+4w2p + Y k'r w, }




r e

The n-th order particular solutions are:

1
(n) _ P - - (n-1) (n-1) (n-2)
(28) vip = —;I (Cr.¥ )y {(n 1wy +ayw T by ]
- [(2n-3)+b,] wi;-l)+ N kzrzwl(n-2)
IR LT C R s 1 ]
+ (~1) [Il+12+ +In-1+In]‘
(n) _ 1 ,_ _ (n-1) (n-1) _ (n-2)
(29) Wop = al {-¢« x -Z ) [(n Dw, *aw, bW, ]
(n-1) 2 2 (n=-2)
+ L2n-3)4b lwy T B K '
n-1 n 3
il SO SO + (-1 T+ (D7D E
4
where .
F
l;.
L
n-1 n-2 n-3 n-4 |
(30) a;= I (m , a,= £ (m, a; =L (m, a,;=73 (m
m=1 m=1 m=1 m=1
(31) n-2 n-3 n-4
bl = I (2m-1), b2 =X (2m-1), b3 = I (2m-1) i
m=1 m=1 =1 "
(32) (n-2) {n-3) ¥
Il = (g.Z)(E.Z-Z)[anlc +b3wlC ] /2!
(33) (n=-3) (n~4)
= - . - - - n= n-
I, (f, Z”i z 2)(5 Z 4) [a14wlc +b W, /31

i
5
i1




>y

)
(34) 1 = (reV)(r.V-2)(r.V-4)...... [r.v-2(n-4)] x
n-1 vy N oA
»
(3) (2)
x [3 Wit 4wlc ] /(n-3)1
? ;
(35) I = (r-V)(r.V=-2)(r-V=-4).-«... e [r.v-2(n-4)] x .
n VI NN noA E
-4
(2) (1)
x [ PP A ] /(n=2)1
 §
In obtaining the recurrence formulas (28) and (29), we used the
following indentity: i
2 .2 _ _ . _ (n)
(36) (V+k%) [z ) (- 7-2) (g-7-4) (g-9-2m) w; ']
= - 2(m+D) K2 (£ ) (poF-2) e ov-n[pe7-2(m-1)] wl®)
NN KR NN ic
: where m = 0,1,2,3,c00000es.er 1 =1,2. Y
te
It is interesting to point out that the first order {
!
particular solutions presented here are the same as those which i
§ ! were obtained by Thau and Paoco. While, the second order solutions i
? are different from the solutions obtained by Thau and Pao. In fact, ]
: we can easily find three different forms of the perturbation solu-
E i tions for the second order particular solutions, viz., )
] "
(2) _ (o) _ (1) 2 2 (o) '
(37) wlp = {.Z[wl LB ] ¥ k“r W,
L (38) S I C DR 6 S IR N I C
2p Noa2 2¢ ] 2
[ 4




L
3
[
(2) _ ., (1) - ., (0) 2.2 (o)
(39) wlp =r z [wl wy ] + 4% x°r Wy 3
(2) (1) (o) 2.2 (o)
40 = re +
< (40) w2p -y [w2 oW, ] Y x“r v, ;
-4
(2) (1) (L)
= . +
y (41) wlP i Z [wlc ip /2)
(2) (1) (1) ¥
= - . +
(42) WZp { Z[w2c w2P /2] :
{
Equations (37) and (38) are the same as those of the Thau- )
Pao solutions. Equations (39) and (40) are the same as the solutions ;
{
presented in equations (24) and (25). The reason we obtain different forms
of particular solutions is due to the fact that the following expressions
exist to generate these particular solutions:
(. ;
2 2 (1) 2.2 (o)
43 Ve + k reVw. '+ kr° w, =0 ,
(43) ( ) L~ T e :
¢ !
|

i=1, 2. !
However, although we can find the different forms for the particular

solutions, after satisfying the prescribed boundary conditions for some

C
specific problems, the complete solutions w$2)= w§2) + wFZ)

i ic ip (i=1,2.)

would be the same no matter which forms of equations (37) to (42) are

N9 oty

10




chosen. Similarly different expression of the particular solutions
for higher orders (n>2) alco can be found. Therefore, here we shall
designate these solutions as "Pseudo-particular sclutions" instead
of "particular solutions”.

As for the perturbation parameter €, equation (9) can be

rewritten as

2]

2(1 + (vl/vz)zl

(1 - (Vl/vz)

(44) € =

In an elastic solid, as Thau and Pao pointed out, the
numerical value of the parameter € is limited between 1/6 and 1/2.
If the problem of SH~wave in two different welded media, or acoustic
waves in two ideal fluids in contact, is considered, the numerical
value of € is 1/2, for the extreme case when vl——> 0 or vz——>w.
However, there is no limit on the lower bound numerically. The
smaller is the contrast between vl and v2, the smaller is the numerical

value of €. For example, for the case of two shear wave velocities

=3.7 km/sec, v.=4.5 km/sec, € is 0.0966. The first few order solu-

V1 2
tions are good enough for a small quantity of €. Therefore, obtaining
the general recurrence formula, no matter how tedious the process may
be, these higher order perturbation solutions promise to solve some

long standing elastodynamic problems which otherwise are analytically

untractable.
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APPLICATION OF THE RMS-VALUE PERTURBATION METHOD TO

SH-WAVES IN A SLOPING INTERFACED HALF-SPACE

The geometry of the problem in question is an elastic
wedge overlying an elastic bottom as shown in Figure 1. Both media .
are assumed to be homogeneous and istropic solid. The inclined

interface is assumed to be perfectly welded. Restricting a line

source of the SH-wave type located in the wedge, we can consider the l
problem to be two-dimensional so that the particle motion of SH-

waves is confined to the direction of z only, and the wave propaga-

tion direction is in the (r,9) of the polar coordinate system.
The overlying wedge medium ( ul,pl) is bounded by 6=0 and 8=a; the

under-lain bottom medium (uz,pz), is bounded by 6=a and 6=m, where

My and Pyr i=1,2 are the rigidities and densities of the overlying

and bottom media respectively. A line source of SH-wave is located

"
at the (ro,eo) in the overlying wedge. The displacements wi(r,a,t), %
i=l.2. satisfy the wave equations in the overlying medium and bottom &

*
medium, respectively l!

¥

) 1 3w, 2 . i
(45) vEw, - = - §(r-r_)8(8=6,)8(t=0") ¥
1 2 2 o] o) ]
B] ot r !
2 |
1 9°W L
2
(46) v 2 W, - —5 —5 = 0 L
B, ot ,
where 5;
(47)
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The conditions to be satisfied in the traction free boundaries are

sufficiently described by the vanishing of the normal components

of the stress. At the perfectly welded interface between two dis-~

similar media, there must be continuity of the displacements and
stresses.
By taking Laplace transforms of the equations (45) and

(46) with respect to t, the new transformed equations are

(48) 2 2T

(V5 - h}) w (r,8,p) = - - §(r-r )6(6-6 )
(49) 2 _ .2 -

(V hz) W2(r,epp) 0
where
(50) w, (r,8,p) =L[Wi(r,6,t)] = f: W, (r,8,t) exp(-pt) dt
and hi = p/Bi i=1,2

Using the present RMS perturbation method, we obtained

a third-order formal perturbation solutions as

(51) w, = wfo) + ew?l) + ez w§2) + e3 wf3)
i i i i i
where
n? - n2 82 - g2
2 1
(52) €= 2 .2 = 2 2
2 (h1 + h2 ) 2 (B1 + 82 )
14
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The Zero-order displacement components axe:

ch s(‘rr-6>+9<) -

21
(53) w(o) = foo - sh s(r~8 )sh sd + K. (hr )X. (hr) ds
1l 1_r2 = o is o’is
+ a9 chose
s
@ _ 2t e (o
(54) w,” = 3 f o Eg  chs(m-8) K _(hr K, (hr) ds
with
-y, sh s(n-a) [ch s(n-a+6°) - sh s(n-eo) sh sa ] +
+ ch(m-a) [sh s(m-a+8 ) + sh s(m-8 ) ch sa ]
(o) o o
(55) As =
{ My sh s(m-a) ch sa + u; ch s{m=-a) sh sa ]
ch sa [sh s(1r-o.+eo) + sh s(ﬂ-eo) ch sa ] +
i
1 + sh sa [ch s(n-a+e°) - sh s(ﬂ—eo) sh sa ]
(o) _
(56) ES

{ My sh s(m-a) ch sa + u,; ¢h s(n-a) sh sa ]

The First-order displacement components are:

ch S(ﬂ-0>+8<) -

2 i
(57) w(l) « — [P sh s(n-8_) sh s8 + x
1 11’2 . o
+ 2l ch s
s
h bz, [Kis+l(hro) * Kis-l(hr)] l(:'Ls(kr) s

9 K, (hr)
R+ L
I r

(%
. -
aito as RV N




-~

(1) _ -~ = () -
(58) wy" = = {m E_ ch s{m-8) Kis(hr) ds
21 {o)
+ :;r-fm Es ch s(m=98) Kis(hro)[- r
with
{59) e - Y hr_ [K {hr ) + K (hr )} E
s o is+l o is-1 o

The Second-order displacement components are :

ch s(n-e>+e<) -

(2) 1w
(60) w,ol o= —;— [m - sh s(w-eo) sh s6 + X
i
+ A(o) ch sb
s
- hZ
=2 F ro[Kis-l(hro)Kis+l(hr)+Kis+l(hro)
2
X + (hr/2) Kis(hro)[ Kis+2(hr) + Kis-Z(h
h2 rg
* ! Kis+2(hro) * Kis-z(hro) ]
2°21
(2) _  (2) (2)
(61) v, =, + WZp
21
(62) w o — [ E@ o os(r-8) K. (hr) ds
2c ) o ] is
with

-+

9K, (hr)
is ]
or

(o)
s

N

Kis-l(hr)] *

r) J +

Kis(hr)

ds

!
H
I3
!
X




3p 2

]
14
%
i
hr
(2) _ 0,2
) (63) B = {5 "IR ,,(hr ) + K, (hr )]
Crian 2 (o)
(is) Kis(hro)} Eg
» The Third-order displacement components are:
ch s(n-6>+6<) -
2i
(64) w3 —— /7 |- sh s(m-8 ) sh s6 + x
Y 1 n‘2 - o)
(o)
+ A ch s6
S
.
(hr )’
. D31 [Kigy3hrg) + Kyg s (r)] K (hr) +
3 5
h 3 3 4
+2—.3'— K, ghr ) [r7 K, (hr) + r” K, (hr)] +
& x ds
h3r§ r
Y T [ K gup T K gy (VK (WDIK ) (D) ]
h3r°r2 ,‘
¢ t oo [Ki g1 BT )K; up (hE) + Ky p (X IR oy (ke ] i
\ / “
i :
¢ |
(3) _ (3, (3 ‘
(65) w, wo ot ¥p i
4 i
(66) w3 a — 2 EB) o s(n-8) K, (hr) ds
3¢ 72 = s is
24 P
: (3) _ © (o) . ‘
rd (67 w /o Eg ch s(m-0) {Jl +T, 40504 34} ds i




O S

with
( N
4 h3rg
—_I;_ [Kis+3(hro) * Kis-3(hro)] -
hro 2
C - (—_5—0 [Kis+2(hro) - Kis—z(hro)]+
' (68) ) - £ (0)
S . 2 s
(is)
* 6 (hro)[ Kis+l(hro) + Kis—l(hro)]-
. 2
- (is) Kis(hro)
LY 7/
(hr) > '
( (69) Iy =k Kyghr) 5 [ Rygan) + X (b))
h3ror2
(70) J, = —;—— [Kis_l(hr YR (4o (hr) + K. (hr )Kis_z(hr)]
N
| h3r§r
B — 1
(71) J3 p [Kis+2(hro)Kis_l(hr) + Kis_z(hro)xis+l(hr),
hro 2 '
(72) Tg = ()7 (K, hr ) - K, (hr )] -
(is)? |1
- 6 (hr) [Kis+1(hro) * Kis-l(hro)] *

+ (is)? K, (hr )

18
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FUTURE WORK

The formulation of the higher order perturbation method, as
an example for solving one of the long standing wave propagation

problems, i.e. the wedge problem, is completed. The follow=-up

s,

will be a numerical evaluation of the formal solutions to the

problem of the SH-wave propagation in a sloping interfaced half-

space.

7
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II11. FINITE ELEMENT SOLUTION TO TRANSIENT PROBLEMS

OF A FINITE CYLINDRICAL CAVITY SOURCE




A ]

ABSTRACT i

This paper presents the numerical solutions to the
problem of the transient seismic response of an elastic whole-
space, an elastic half-space, and a layered elastic half-space
due to a finite cylindrical cavity source by means of the finite
element method, based on the principle of Virtual Work.

Synthetic seismograms of both the radial and vertical
displacements of the transient response of Model I - a whole-
space, Model II - a half-space, and Model III - a layer half-
space for a finite cylindrical cavity source embedded in the
medium at several important observation points are obtained.
Some of interesting features of the transient response are as :
follows: (1) for the observation points inside the medium, the P
reflected waves from the surface boundary of the half-space '
does not seem to have significant effect on the amplitude of
the wave for the velocity of the medium assumed. For vertical
displacements, the arrival of the reflected wave is identified
as a step in time. For radial displacements, the arrival of
the reflected wave is not easily identified, (2) the amplitudes
of both vertical and radial displacements at the observation |4
point on the surface of the half-cpace are much larger than "
these at the corresponding observation point in the medium of
the whole-space, (3) the wave forms of the transient response
strongly depend on the dimensions of the finite cylindrical
cavity, i.e. the radius and length of the cavity, (4) the P wave
traveling periodically from the top rim to the bottom rim of
the ‘cavity along the vertical interface of the cylindrical
cavity and the P wave periodically oscillating in the bottom
(or the top) face of the cavity with a motion of the Bessel
function order zero type, and traveling through the vertical \
face of the cavity, to the top (or the bottom) face of the i
cylindrical cavity also with a motion of the Bessel function ‘
order zero type are dominant in all three models, (5) there is
no vertical displacement at any point along the middle plane,
whcih are symmetrical with respect to the two end faces of the ;
cylindrical cavity, in Model I - a whole~space, (6) for Model L
IITI - a layer half-space, the long period wave is predominant, r
traveling periodically along the verical face of the drilling
hole cavity between the rim of the contact at the layer-interface
and the top rim of the ecylindrical cavity, (7) the weathering
(low velocity) layer acts as a low pass filter, all the high
frequence arrivals are filtered out in the seismograms_at the
observation points located in the weathering layer, (8) the shape
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of the input forcing function is well preserved on each
seismogram of the vertical displacement but not on the radial
displacement, (9) the beat phenomenon is observed on the

radial displacement of these observation points located in the
upper region of the cavity source, (10) the amplitudes of both
the radial and vertical displacements are extremely large at
those observation points close to the cavity in the filled
drilling hole, but are attenuated rapidly as the observation
moves away from the cavity, and (1l1) shear waves can be
generated from a finite length cavity source with only normal
stresses applied on the surfaces of the cavity. The arrival
of the shear wave are clearly identifiable at these observation
points in the region along the diagonal line of the cylindrical
cavity.




1 INTRODUCTION

For the transient problem of a layered medium due

to a finite cylindrical source, we must resort to numerical

i solutions, such as the finite element method, which provides
a mean of solving a class of transient problems of elastic
wave scattering and diffraction. For this reason, we have
developed the finite element method to solve transient

C problems of elastic wave propagation in a layered medium due
to a finite cylindrical source. The formulation for the
finite element method based on the principle of virtual work
is briefly outlined in sections 2 through 4. It should

£ be pointed out that all the inherent logarithmic singularities
are being removed analytically in the formulation. Therefore,
the errors due to the singularities will not be introduced
into the numerical calculation. The applicability of the

( method to solve practical seismic problems has also been
well demonstrated through solving a series of the transient
problems in an elastic half-space and a layered half-space
due to a finite cylindrical cavity source as shown in section

C 5. The numerical results and interpretation are presented
in section 6. Conclusions are presented in section 7.

i
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2. DEVELOPMENT OF FINITE ELEMENT DISCRETIZATION BASED ON
VIRTUAL DISPLACEMENT FOR SOLVING TRANSIENT PROBLEM OF
A FINITE CYLINDRICAL CAVITY COMPRESSIONAL SOURCE i

The Principle of Virtual Work states that for the
equilibrium of an elastic, isotropic and homogeneous body, |
the total internal virtual work is equal to the total
external virtual work for any compatible and small virtual
displacements imposed onto that body (Fung, 1965) -

t _ b,,.t s t
]v 78e - dv = fv £¥8U dv + fs £°8U ds 1)

For an axial-symmetrical geometrical configuration
with a dynamic source excitation, we adopt the cylindrical
coordinates system (r,6,z). The guantities in 1) assume é
the following:

(a) The azimuthal~-independent displacement field Ut and

© r———
oy

il PR R R e e T TR L OO

the'corresponding strain et are

U~ = [ L 0, uz]

0, O, Erz] 2)

e = e

(b) The strain-displacement and the corresponding
stress, and the stress-strain relations are

. = . .. |

€ ( vyt uj'l)/Z [

t = [t T T 0, 0, 1t__] ]

rr’ 66’ ‘zz' "' °' ‘'rz L

‘i

- |

Tij = [ kskksij + 2ueij] 3) )
(c) £5 and fb are the surface traction and béﬁy force,

respectively.




3.

1) may be converted to a system of ordinary
differential equations by the following arguments. As
the volume V may be divided into n subvolumes, or finite
elements Vi and the surface S, similarly divided into
n subsurfaces Spr M = 1,2,3,.........8, we then have

. N : N
lim lim
vV = w LIV ’ S = r s 4)
N-+ m=1 m N+ = m=1 m

In each subvolume (or subregion) Vm' instead of
determining the displacement field everywhere in Vh, we
find the displacement vectors at only a discrete finite
number of points in Vh, viz; nodal points, under the
action of the external forces. The displacement vector
at the points other than these nodal points may be
determined from the displacement vectors at the nodal points
through some interpolation functions. Within each element,
the displacement field Um may be expressed in the form

Ut = N 5)
and the strain-displacement relation is
e1'!1 = qu,m 6)

where

N" = a known matrix of the spatial interpolation

function for the mth

element,
¥™ = the nodal displacenent vector of the m
B™ = the matrix of the strain-displacement relations

of the mth b

th element,

element.

ENVAEDY-- 0.0 < Y N

S
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After applying equations 4), S) and
eguation 1) becomes

N .
I (MR + KM+ =9
mn=1

with

2’

fom oo (") B g™

g’

fvm (Bm)tDmBm av™

™ = s m (N (£5)" o™

6),

where Mm, Km, Dm, Tm are the mass matrix, stiffness

of tractions applying on the surface S, respectively.

7)

8)

9)

10)

matrix, matrix of constitutive relation, and vector matrix

A R




3. INTEGRATION OF THE INTERPOLATION FUNCTION N ON AN
AXIAL-SYMMETRICAL TRIANGULAR RING ELEMENT

ol Aot

For the present transient problem, which possesses
an axial-symmetrical geometry, we may adopt 'solid
toroidal elements' for the spatial domain. Since the
whole formulation is independent of 6, the integrals
for the volume and surface integrations in the equations
of virtual work reduce to these of plane surface integrals
and line integrals.

Since the displacement field is linear, we position

YRR E TR

the element arbitrarily in the r-z plane. Constructing
the element stiffness matrix, even for the simplest

case of a linear displacement field, we must take into
account the dependence of the strain-displacement equations

¥,

on the inverse of the radius, particularly, the singularities
along the axis of symmetry. Applying the proper interpola- !

tion function for space, and using the pertinent strain-
displacement relationship, we obtain the kernel stiffness

)
T AT
DY VI G, NERP ¥ ST

matrix as follows:

( )
. - (1—v)I4 12 (l-v)I5 0 0 vI,

P

211 I3 0 0 2ul

1

1-v)Ig I, L-VTge(1-20)1,/2 0 (1-2v)T,/2  ul,

vIz 2u11 uI3 0 0 = (l-v)Il

~ /

|

|

|

! :

’ 0 0 (1-2v)1,/2 0 (1-2v)I,/2 0

11)

4
12
r
¢
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in which

I, = /S rdrdz I, =f/ drdz/r

I, =ff drdz Ig =ff 2zdrdz/r

I, =ff zdrdz Ie =ff zzdrdz/r

The spatial integrations I, through I_ have carried

1 6
out analytically so that the inherent logarithmic

singularities are being remc-ed. Otherwise, the errors
due to these singularities willi be introduced into the

numerical calculations. The terms Il' I2, and I3 vield

[l
[}

1 = (1/6)(rl+r2+r3)[rl(zz—z3)+r2(z3—zl)+r3(zl—zz)]

H
]

2 (1/2)[rl(zz-z3)+r2(z3-zl)+r3(zl-zz)]

=)
[}

3 (1/6)(zl+zz+z3)[rl(zz-z3)+r2(z3-zl)+r3(zl-zz)]

12)

The terms Iye Ig. and Ig involve the variable r in the
denominator of the integrané and result in considerably

complicated expressions,
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(i) In the case r1#r2#r3#r1#0

»
i;
Ig = X35 * Xp3 % X5y 5
. 1
;E
Ig = Yy, * Y3 * ¥3; ;
o |
Ig = 215 % Z33 * 23y
$ where, for i,j=1,2,3 $
(r.z.-r.z.) r,
%, =—dd 3% 151
J -
(z,~2.)
Yi. = —————;L—-[z (3r -r, ) z (3r -r ).
L J 4(r -r )
T riz;-riz, ry K
» (1/2)(——3—L-) 1In—2]
. i rj rj :
[N
Y.z.-Y.z, r. (z.-z.)‘
2,y = (/3) (21257 1L s ——d—0p .
ri-rj rj l8(ri—rj) L
¢«
[z.z(llr.2 - 7r.xr, + Zr ) + Zz z (2. 5r 2 _ 11r r, +
j i i3 i’3 g
: 2 2 2 _ 2 - 4
C 2.Srj ) + z, (llrj 7rirj + 2ri )] 13) g




e

8' K
¢
;
t
Special problems arise, when the joints are located ,
on the axis of symmetry, as the terms with ln(ri/rj) and
(ri-r.) in the denominator become infinite. 1In this case,
we evaluate the integrals by L'Hospital's rule.
(ii) In the case ri#rj#rk#ri, and ri=0
’
r.(z,~z.)+xr, (z,-2.) r, £
14 = [—d k “i k'"i 75 ] 1n—d .
rj-rk ry
Ig = ij + (1/4)[(zi-zj)(3zi+zj)+(zk-zi)(3zi+zk)]
r.
- (1/2)z;° 1n 3 )
X, §
¢
z2, -2
1= 2k 0,2 2
IG = ij + (llzi +Szizk+22k ) + A
18 ;
( zZ.,-2 r :
13 (112.%452.2.+22.2) - (1/3)z,> ln_i
i 193 3 i
18 r,
14)

(iii) In the case T =Iy» and rj#ri#o

. X,
I, = [(;-i—) 1n—r-l- 11 (z,-2,)
j "k k




»

zZ, -2, r.
15 =-———E——i—girjzzk+rj2zi—2rjrkzj) 1n —L
2(ri-rk) Xy
z, -2,

- ——=12z.(r,+r. )= (3x.-r ) (2, +2.)]

4(r.-r )2 3 "k 73 j 'k k i

j "k
(z,~-z.)r.
-k "i""9 2 2 2 - -
16 - 3 [rj (zk +zizk+zi )+3rkzj(rkzj rjzk

3(r.-x,)

j 'k

r, (z,-z.)
ryz;)] In 1+ k i 3 [zj2(3rj2-15rjrk-
Ty 18(rj-rk)

2 2 2 2 2

6rk )+zj(zk+zi)(6rj +15rjrk-3rk ) - (zk +zi +
© z,2.) (llr.2-7r.r +2r, 2)]
t i%k 3 57k Tk 15)
(iv) In

I4 = -(zk-zi)

the case ri=rk#rj, ri=rk#0, and rj=0

z, -2
= -k i
15 p (2zj+zi+zk) 16)
2, -2,
= - _k 7i 2 2 2
I6 1o (sz +22k +22i +3zizj+3zjzk+2zizk)




(v) In the case when ri=rj=0, and rk=0, it can be shown
that the terms containing I4, Ig, and IG do not appear

in the stiffness matrix that the displacements ui=uj=0.

All these integrals can be used as a basis for deriving
the similar integrals of nonlinear interpolation functions.

TIME INTEGRATION SCHEME

After careful and critical tests and evaluation of
various three-dimensional finite element formulations,
it was found that the combination of lumped mass matrix
representation and explicit central-differences time
integration of three-dimensional finite element
formulation appears to be the best in solving transient
problems of elastic wave propagation. An important
advantaye of using a lumped mass matrix is that the matrix
is diagonal, and as it will be seen later, the numerical
operations for obtaining the solution to the dynamic
equation of equilibrium are simplified.

The scheme of time integration for the dynamic
structural problem with the eguation of motion

can be considered as a subclass of the explicit methods of
the form




.

11.

N
+ . . . ) =
y ) Un+1 j-—z-o (aJUn-J * bJKUn"J) 0 18)
. 2
. k.
Therefore, we obtain
3
i . U(t+At) = U(t) + 0(t)At
| D(t+0t) = O(t) + M IKU(t+At)At 19) {
|
| \ :
| which is the central differences scheme. Krieg(1970) s
and Baylor et al(1974) have proved that the central ’
differences scheme has the largest stability region. s

- R
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5. TRANSIENT PROBLEM DUE TO A FINITE LENGTH CYLINDRICAL
CAVITY IN AN ELASTIC HALF-SPACE AND ILAYERED HALF-SPACE

In this dissertation, with a view to simulate
conditions in the neighborhcod of a drilling hole, the
source chosen is a cylindrical cavity of length 2 = 6
feet, and radius a = 0.5 feet, centered at the origin of
coordinate and embedded in an infinite medium, Figure 1.

For comparison, we simulate the second model with the
half-space, the surface of the half-space is located at
25 feet above the top end of the c¢ylindrical cavity, as
shown in Figure 2. The half-space medium is character-
ized by the elastic constants E, o, p as medium 2 given
in Table 1.

In seismic prospecting, a layer occurs at the surface

of the earth which is unconsolidated, and often heterogeneous

with low wave velocity, so called "weathering layer”.

The thickness of the weathering layer may vary from almost
zero to several hundred feet; however, the most common
thickness is from about 25 feet to 100 feet. For our
computation, we simulate the weathering layer with a
thickness of 20 feet. The cylindrical cavity is embedded
5 feet below the weathering layer, including the case of

a filled drilling hole. The geometrical setting is shown
in Figure 3. The medium of the weathering layer and
the filled drilling hole are characterized by the elastic
constants El’ 01, Dl and E3, 03, 03, respectively, as
given in Table 1. The finite element meshes are formed
according to the dimensions as described above -and shown
in Figure 4,5 Model I has 687 nodal points and 1268

stemanteibiidsitasdailitecic iy . e e e
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Figure 1. The Geometry of Model I - the

Whole-space.
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elements and Model II and III have 729 nodal points

and 1348 elements. The size of the finite element
models is chosen in such a way that the artificial
reflections will not reach the observation points within
the time interval of 0 - 15 milliseconds.

The system is set into motion by the application of a
sudden, normal stress applied uniformly on both the
vertical walls and the two ends of the cylindrical cavity.
The time variation of the applied stresses are assumed to
be given by a modified Heaviside function as shown in
Figure 6. The rise time of the pulse is assumed to be
16At, where At=20 useconds, is in order to satisfy the
Courant's stability condition.

In order to study the transient response in the region
along the vertical surface of the cylindrical cavity, the
observation points along LINE A, B, C are selected (see
.Figure 7). In order to study the diffraction behavior
_ of the rims of the cylindrical cavity and the comparison
between the transient response in the weathering layer and
the half-space, we choose the observation points to be located
along LINE D and E. The observation points along LINE F,
G,H,I,J,K are chosen to investigate the transient response
in the upper region of the cylindrical cavity and in the
filled drilling hole. For the surface response as encon-
tered in seismic exploration, the observation points are
selected to be located along LINE L.

For the limited computer time available to the present

- study, only the computational results for the digplacement

U, and U, in the time interval of 0 - 15 milliseconds for

the observation points along LINE A through L of Model I,

II, III are obtained as presented in Figure 10 through
21.
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in the Numerical Solution for Model I.
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Figure 7a. The Locations of the Observation Points
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Figure 7b. The Locations of the Observation.-Points
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Figure 7c. The Locations of the Observation Points

in the Numerical Solution for Model III.

20 feet

5 feet

6§ feet

65 feet

-

b Base s e




23-

INTERPRETATION THE NUMERICAL RESULTS

A. Ray Paths for Model III

It appears to be instructive to use the simple
concept of ray to show the various arrivals of waves
in Model I, II, and III. As the ray paths for Model
I and II are relatively easily traceable, in order to
avoid duplication, we choose to show schematically the
principal ray paths for Model III of a finite cylindrical
cavity source located in a two-layered half-space with
a filled drilling hole with unconsolidated material.
It is assumed that the upper layer models a weathering
layer, whcih is underlain by a relatively consolidated
half-space. The filled drilling hole is properly tapped,
and there are no blowouts. The cavity simulates a
cylindrical charge. The following notations for the
expected arrivals of waves are adopted:

(1) Subscripts 1, 2 and 3 refer to wave velocities
in the upper layer; i.e. the weathering layer, the under-
lying half-space and the filled drilling hole, respectively.

(2) Superscript t refers to the rim of the filled
drilling hole on the surface, the rim of the contact at
the layer-interface, the top rim of the cylindrical cavity,
and b refers to the rim of the contact at the layer
interface, the bottom rim of the filled drilling hole, and
the bottom rim of the cylindrical cavity, so that for
example, 1b = 2t, 2b = 3t.

(3) Subscripts J refers to cylindrical waves on the
top and bottom faces of the filled drilling hold and the
cylindrical cavity of the Bessel function order zero type.

ST
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'(4) Superscripts, 1N, 2N, and 3N, refer to the repeated
multi-ray paths along the surface of the filled drilling
hole between 1lt, 1lb; 2t, 2b; and along the cavity respectively.
N is the number of repeated multi-ray path.

(5) Primes, refer to refracted waves.

The ray paths of the principal wave arrivals are
shown in Figure 8 and Figure 9, for P-waves, and for
P converted into S, respectively. The ray paths for §
waves and for S converted into P waves can be similarly
traced, according to the Snell's law. The following are
the identification of various waves for Models:

(1) Direct Waves,
P, S: P and S waves directly from a point of the cavity

source to the observation point.

(2) Direct Diffracted Waves,

P3t, P3b, S3t, S3b: Diffracted P and S waves

_traveling from the top and bottom rim of the cylindrical
. cavity source.

(3) Diffracted and Reflected Waves,

3t 3b 3t 3by . i
P2 P2, P2 P2’ P2 Sz, ‘P2 52' Diffracted P wave |
traveling from the top and bottom rim of the cylindrical L

cavity source to the layer interface and reflected as P P
wave or converted as S wave, respectively. .

3t 3b 3t 3b
S2 Pz, 52 Py S2 Sz, 52 52
traveling from the top and bottom rim of the cavity source

: Diffracted § wave

to the layer interface and reflected as P wave or converted
as S wave, respectively.
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(4) Refracted Waves,

3t., 3b_, 3t., 3ba, i
P2 P!, P2 Pl, P2 51’ P2 51' P wave traveling
from the top and the bottom rims of the cavity source to
the layer interface and refracted into the first medium as
P wave, or converted as S wave, respectively.

3tas 3b., 3t,, 3b,,. X
82 Sl’ 82 Sl,- 82 Pl’ 82 Pl' S wave traveling
from the top and the bottom rim of the cavity source to
the layer interface and refracted into the first medium as
P wave or converted as S wave, respectively.

PgtP', PgtS§: P wave traveling vertically from the
top rim of the cavity source along the interface between
the filled drilling hole and the layered medium, with the
velocity of the half-space and refracted into the filled
drilling hole as P or converted to S.

PitPé, PitSé: P wave traveling vertically upward

from the rim of the contact between the layer interface and
the filled drilling hole and refracted into the filled
drilling hole as P or converted to S.

sgtsg, SgtPéz S wave traveling vertically frcm the
top rim of the cavity source along the interface between

the filled drilling hole and the layered medium, with the
velocity of the half-space and refracted into the filled

drilling hole as P or converted to S.

SztS', Sth': S wave traveling vertically upward
173 1°3

from the rim of the contact between the layer interface and
the filled drilling hole and refracted into the filled
drilling hole as P or converted to S.

(5) Multi-Diffracted Waves,

3t,3b 3t,3b_3t 3b,_ 3III,3b -
P2 P2, P2 P2 P2 5 (= P2 P2 ) PR .
»3by 3t 3b3t,3b 3t _ ,3III 3t
P2 P2 ’ P2 P2 P2 2 (= P2 P2 Yreeeons
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3t_3b 3t_3b_3t_ 3b. ,_ 3III_3b
PSP, S,, P RLOPTRLOS, (= PSS, ) sttt
3b_3t 3b_3t_3b_3t. ,_  3III_3t
Py Py Sys P3P, Py RIS, (= PSS, )yeeeennn.

Diffracted P wave traveling periodically from the top |
rim to the bottom rim of the cavity along the vertical
interface of the cylindrical cavity and diffracted as

P wave or converted as S wave respectively at the
top (or bottom) rim of the cavity.

p2bp2t,  pZbpltplbplt (. p2ITIp2L, ... :
poPpotpll,  piPpltplbpltpb . p2IVp2hy ., . £
p2bplts , p2PpltpZbpltg (- p2TTISZE) ... r
p2bp2tplbs , p2Pp2tpZbpltplbg (o p2IVsZE), . 4

Diffracted P wave traveling vertically along the hole
between the top of the cylindrical cavity and the layer
interface and diffracted as P wave or converted as S
wave respectively at the top rim of the cylindrical cavity
or thellayer interface.

(6) Special Waves,

3t,3b 3b 3b, 3t 3t
PJP2 P2 PJP2 ’ PJP2 P2 PJP2 '

3t 3b_ .3b_3t_ _3t,_
P P, P, PP, PP PoC(= P

3113t
JP2 P2 Yreeeeonn

P wave traveling periodically from the bottom (or the top)
face of the cavity with a motion described by the Bessel
function order zero, through the vertical face of the cavity,
to the top (or the bottom) face of the cylindrical cavity
also with a motion described by the Bessel function order

2€ero.




‘B. Detailed Interpretation of Synthetic Seismograms

Figure 10 through 21 show synthetic
seismograms of both the radial and vertical displacements

Ur and Uz of the transient response of Model I - a whole
' space, Model II - a half-space, and Model III - a layer .

o G RETCIT

half-space due to a finite cylindrical cavity source
embedded in the medium at the observation points along

lines, A to L, as shown in Figure 7.
L]
We here shall attempt to identify the principal wave !
arrivals, by means of both the recognition of the change X
of the characteristics of the wave forms and the expected ;
' arrival times of these principal waves based on the ray

. —
i

tracing technique.

4
. £
Line A ‘,
Figure 10 shows synthetic seismograms of Line 3, %
at the nodal points 214,215,216,217,218,219 and 220 for ]
i
Model I, II, and III. (See Figure 7 for the locations j
. of the nodal points) In Figure 10 a,, the radial ﬁ
i a
1
- displacement Ur’ the arrivals of each trace, P2, Sgb, i
! {
3b_3t 3t,3b_3t . 3b 3t i
PJP2 P2 PJP2' PZ P2 P2 » and the multiples of PJP2 P2 PJPZ’ 5
3t 3b, 3t

P2 P2 P2 are identified. The paths of these_arrivals i
t . are shown in Figure 8 and Figure 9. In addition to
these arrivals, by comparing the radial and vertical
displacements of Model I with these of Model II, the arrival
of the wave, Pgth, is identified as a step in time and is
| indicated in Figure 10 a2'. The arrivals of

i 3b 3t 3t 3b_3t _2b_2 2b, 2t 2b_2t ¥
: Pyr PyPy Py PyPy. By ByR3C, PoUR3P,, R3PRIYs), pEPRIte,, j

28 . 1
o p2bp2tg sgbsgtpz and the multiples of Pgbpz'cp p2bplt :

’ 2 2' P 4
patpgbpgt 4 p pibyit . . 222 *
2 P2Py7, an PJP2 P2 PJP2 are similarly identified in

S |

——— e vmsn eme e e




30'

Figure 10 aj for Model III.
As the P wave velocity in the half-space is assumed
to be 5000 ft/sec, the travel time of 1.2 milliseconds for
a P wave is equivalent to the travel distance of 6 feet,
which is the length of the cylindrical cavity. 1In Figure
10 ays the girggdgg wave train immediately following the
arrivals of PSPy, with a period of about 1.2 milli-
second marked by "A" on the seismograms begining at 4.2
milliseconds with respect to the origin time, appears to
fit the traveling path of the type of P wave P;tPnggt
traveling periodically from the top rim to the bottom rim
of the cavity as P wave along the vertical interface of
the cylindrical cavity. The wave train with a period of
1.6 milliseconds marked by "B" on the trace 214 in Figure
3t,3b 3b

10 a, is indicated as P.P P2 P.P

1 J°2 gFP2 ¢ as the travel time

of 1.6 milliseconds for P in the half-space is equivalent to

the'traveling distance of 8 feet. The P wave PJP;tPngJP;b

apparently is traveling back and forth periodically around
the cylindrical cavity. Because the distances between

-each o% the observation point and the top and bottom rims

of the cylindrical cavity are different, waves originated
from the top rim and from the bottom rim of the cylindrical
cavity interfere constructively and destructively, depending
on the distances between the observation point and the top
and bottom rims of the cavity. In Figure .10 a,, for the
velocitf of the medium assumed, reflected waves, Pgtpz, from
the surface boundary of the half-space does not seem to have
significant effects on the amplitude of the wave, compared
with P3°
grams in Figure 10 azs and especially 10 a3f, show the

in a whole space, as in Figure 10 a,. Seismo-

i e )

[

sl "ol
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superposition of the short period waves of about 1.2 milli~
seconds on the long period wave of about 5 milliseconds, as
marked by "L". The long period waves observed on these
seismograms are essentially generated in the filled drilling
hole with a very low velocity as radiated cylindrical waves,
as the refracted waves from the weathering layer arrive
later than the time of 1.5 milli-second. The travel time

of the P wave in the filled drilling hole from the top of
the cylindrical cavity to the layer interface is 5 milli-

second, corresponding to a distance of 5 feet. The travel

distance of the wave PngZtP is exactly 5 feet. Therefore, }

3 °2 j
these long period waves are identified as Pnggt, traveling .

along the hole vertically between the top of the cylindrical
cavity and the layer interface. The input step function

is not as clearly preserved in the radial displacement in

27 and ay as in the vertical displacements as g
shown in Figure 10 ai,aé and aé. For a finite cylindrical

Figure 10 a;r a

cavity source, the preservation of the input step largely
depends on the configuration of the observation point.
All the observation points in Figure 10 ayr a,, and a,
are located along a line perpendicular to the axis and

. barallel to the top and bottom faces of the cylindrical

cavity. The normal applied stresses on the vertical

v face of the cavity contribute to the radial displacement
in a radially outward direction, but the applied stresses
on the end faces of the cavity tend to elongate the cavity
in an axial direction and contribute to the radial
displacement in a radially inward direction along the L
vertical face of the cavity. The combination of the

applied stresses on the both end faces and the vertical

face of the cavity gives the resultant complicated radial

displacement. Because Nodal Point 214 is only~2.5 ;1
feet from the top rim of the cylindrical cavity, the
contribution due to the applied stresses on the both end
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faces of the cylindrical cavity to the radial displacement,
at Nodal Point 214 is approximately the same order of
magnitude as that due to the applied stresses on the vertical
face of the cavity, as reflected through a radially outward
rgzponse of the wave forms between the arrivals Pgt and

S, - As the distances between Nodal Points 215 to 220,

and the cylindrical cavity increase, the contribution due to
the applied stresses on the both end faces of the cavity ,

becomes pre-dominant, as reflected through the radially

inward response of the wave forms between the arrivals Pgt :
and Sgb, as designated by "C". In Figure 10 al', and }

az' . the vertical displacements Uz, the wave arrivals P2,

3b 3t,3b, 3t 3ITI, 3t 3t.3b 3t 3b, 3t

5 7 P2 P2 P2 52, PJP2 P2 R P2 P2 P2 P2 P2 and the multiples

3t,3b._3t 3III_3t 3t.3b_3t,.3b_ 3t . e
of P2 P2 P2 Sz. PJP2 P2 and P2 P2 Pz P2 P2 are identified.

The ray paths of these arrivals are given in Figures 8
and 9. In addition to these arrivals, the arrival of a

step Pgth, in Model II Figure 10 a2', is identified.

S

In Figure 10 a3' of the vertical displacement U_ of Model

. 2b_2t _2b_2t 2b_2t 2 _3t.3b
ITI, the arrivals, P2’ P2 P2 ’ P2 P2 52, P3 P3 ’ P2 P2 Sz,
2b_2t . 2b_2t 2b 2t 2b_ 2t

and the multiples of P2 P2 R P2 P2 SZ' P3 P3

are identified. The wave arrival of PgtPnggtsz is

373 72
p2Pplts,
predominant on all the seismograms in Figure 10 al' '
az' and a3'. The arrival of Pgbpgtsz contrarily is only
predominant on the seismograms of Figure 10 a3' . The
wave, PJPnggtPJPgt, is identified in each seismogram of
Figure 10 al' and a2'. It has a period of about 1.6

milliseconds, as specifically marked "A" on the trace of L

Nodal Point 217 in the time interval of 8.3 milliseconds

and 9.9 milliseconds. The identification of the wave is
based on the fact that the P wave velocity in the half-space
is 5000 ft/sec, the travel time of 1.6 milliseconds for

the P wave is equivalent to the travel distance of 8 feet.
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Therefore, the wave PJPgbp;thPgt is the type of the wave

traveling periodically from the bottom (or the top) face

of the cavity with a motion described by the Bessel function
order zero, through the vertical face of the cavity, to

the top (or the bottom) face of the cylindrical cavity also ‘
with a motion described by the Bessel function order zero.

The ray path of this'type of wave is shown in the following
diagram.

Line B |
Figures 11, give synthetic seismograms of the i

radial displacement U, and vertical displacement Uz of

Line B at Nodal Point 253,254,255,256,257,258 and 259

for Model I, II, and III as shown in Figure 7. The |

3t 3t 3b 3b,3t 3t,3b 3b :
waves P2, P2 ’ P2 p2 . P2 Pz ’ PJP2 P2 PJP2 and the
multiples of P3tP3b, P3bP3t 3tp3b 3b

2 Py 2 P and PJP2 P2 PJPZ are g}l \
identified in Figure 11 ays Model I, the whole space.



3.
The reflected and converted waves from the layer interface
and the diffracted from the top rim of the filled drilling
3t 3b 3t 3b 3t_3b, 3t 3t 3b_3t_2t
hole, 2t. P,"P,, P, P,, P °s,, PLUS,, PLUPLVPLT,PLUPL P PYT,
3t_3b 3b . 3t 3b 3t 3t_3b_3t_2t
PJP2 PS5 PJP2 and the multiples of Pz P2 P2 ’ P2 P2 Pz 5 ¢
PJPgtPngJPgb are identified in Figure 11 ag for Model
IIT, The predominant waves observed include: (1) PgtPng;t,

traveling periodically from the top tc bottom along the
vertical face of the cylindrical cavity with a velocity of
5000 ft/sec and a period of about 1.2 milliseconds. (2)
PJPgtPngJPgb , travels periodically from the bottom

(or the top ) face of the cavity with a motion described
by the Bessel function order zero, through the vertical
face of the cavity, to the top (or the bottom) face of the
cylindrical cavity also with a motion described by the

Bessel function order zero.

.The normal applied stress on the vertical face of the
cavity contributes to the radial displacement in a radially
outward direction, (i.e. the sense of direction on the
seismogram is "positive") but the applied stresses on the
end faces of the cavity tend to elongate the cavity in an
axial direction and contribute to the radial displacement
in a radially inward direction (i.e. the sense of direction
on the seismogram is "negative") along the vertical face
of the cavity everywhere. Morever, there are stress
concentrations around both the top and the bottom rims of
the cavity. As the location of the Nodal Point 253 is only
2,5 feet from the vertical face of the cavity and an equal
distance of 3.9 feet from both the top rim and the bottom
rim of the cavity, the first arrival P wave from a minimum
distance between the observation point Nodal Point 253 and
the vertical face of the cavity contributes to the radial
displacement in a radially outward direction; the diffracted




35.

3t
2
contribute to the radial displacement in a radially inward

arrivals P and Pgb from both the end faces of the cavity

direction, Subsequently, the arrivals of the diffracted

waves Pgbpgt, and PgtPgb and their multiples contribute to

the radial displacement to have an oscillatory appearence.

Therefore the arrivals of the waves, P, Pgt, P3b P3tP3b,

3b_3t 2 ' 272
P2 P2 give an impulsive like wavelet in the time interval

of 0 and 3 milliseconds, and the arrivals of the multiples
gtPgb and Pgbpgtgive the resultant

oscillatory radial displacement and followed by a long

of the diffracted waves P

period wave train as clearly shown in the seismograms of
Nodal Point 253 of Model I, II, and III (see Figure 11
ajr ays and a3).
As expected, there are no vertical displacement at P !
every nodal point along Line B, symmetrically with respect g
to the two end faces of the cylindrical cavity in Model I,
in the whole space as showr in Figure 11 al'. Because
the applied stresses on the both end faces of the cavity
are equal and in an opposite direction, the resultant
vertical displacement along lLine B is therefore zero; Like-
wise the stresses applied tO the vertical face of the cavity
are in the r-direction, the resultant vertical displacement
along Line B is also zero. In Figure 11 a2' the vertical
displacement along Line B for Model II, a half space, is
zero until the arrival of Pgtpz, i.e. P wave is reflected at
the surface of the half-space. The waves for Model III are

There are eight principal

complex as shown in Figure a,'.

3
. ; 3b 3t 3t 3t 3b L
arrivals accounted for, e.gq. P2 P2 ’ P2 P2, P2 SZ' 82 SZ’
3t 3b 3tp2b 2t 2by 2t 2by 2t
52 52, P53 P35 P3 P3 Sy P3 P3 P2 and P3 P3 Sy + and the

ipl £ 2bp 2t 2bp 2t .
multiples o p3 p3 P2 and P3 P3 Sz -

Waves with a period close to 5 milliseconds marked by

"A" are clearly identifiable on virtually all the seismograms
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in Figure 11 a3' ; they are Pnggtpz traveling

periodically along the vertical face of the drilling hole
between the two rims at 2b and 2t with the velocity of
the filled drilling hole.

Line C

Figure 12 gives synthetic seismograms of the

radial displacement Ur and the vertical displacement Uz
of Line C at Nodal Point 293,294,295,296,297,298, and
299. Line C lies in the plane of the bottom face of the %”
cavity, as Line A lies in the plane of the top face of the ‘_
cavity. The locat*' ns of these nodal points are shown in ;f
Figure 7. As expected, the radial displacements of
all these nodal points as shown in Figure 12 a, are A
identical to these as shown in Figure 10 a,, the vertical .
displacements of all these nodal points as shown in Figure
12 ai, are also identical to these of Figure 10 al'.
except the vertical displacements of Line C are in an
opposite direction of these of Line A. The seismograms
. of the radial and the vertical displacements as shown in
.- Figure 12 a, and az' are identical to these as shown in

! Figure 12 ay and al', until the arrival of P;tPZ and

Pgbpz as in the case of Line A. In comparison of the
radial and the vertical displacements Line C in Figure

II-12 a, and a,' with these of Figure 12 a, and a,"’', '
the arrivals og P3bP P3tP P3ts P3bs P}bpztp ; |

2 72’ F2 F2' T2 72" "2 72" "3 73 "2
2b_2t 2b_2t_2b 2b_2t_2b . . . e
P3 P3 Sz, P3 P3 P3 P, and P3 P3Py P2 are easily identified
on the seismograms of Model III as shown in Figure 12

1 ]
a, and a3 .

|
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Line D

Figure 13 shows synthetic seismograms of the radial
displacement U, and vertical displacerant Uz of Line D at
Nodal Point 193,172,152,131,111,90 and 70 for Model I, II,
and III. As shown in Figure 7, Line D is situated
diagonally with respect to the top rirs of the cylindrical f
cavity. For Model III, Nodal Point 193 is in the half-
space, 172 in the layer interface, ané 152,131,111,90, and

; 70 in the weathering layer as shown in Figure 7c. The
. 3t 3t 3b 3b 3b_3t 3b3t_3b_3t
wave arrivals P2 ’ S2 ’ P2 ' 52 P P2 P2 Sz, P2 P2 P2 P2 ' '
3b_3t_ 3b_ 3t 3b_3t 3t , ;
P2 P2 P2 P2 27 PJP2 P2 PJP2 and the multiples of .
3b_3t_3b_3t _3b_3t_3b_3t 3b 3t .3t ?
P2 P2 P2 P2 ’ Pz P2 P2 P2 52 and PJP2 Pz PJP2 are all
identified on every seismogram of Figure 13 ay and as. ;
Model I, and II. In Figure 13 a%, the arrivals at %f
Nodal Point 193 include Pgt, Pgb, sg , PJPgt, s;b, 3
‘ 2b_2t_ 2b_2t 2b_2t 2b_2t 25_2t 2b_2t A
. P2 P2 P2 P2 52’ P3 P3 P2, P3 P3 52, 33 S3 P2, S3 S3 82 and
the multiples of PZbPth R szpth ' P2bP2t ' PZbPZtS
3b. 3t 3t 2 72 72 3°3 °2 2 "2 72 3 "3 72
and P_.P."PSP_P, .
) J2 "2 "J2
. ) Nodal Point 193 is located at a distance of 2.9 feet

from the top rim of the cavity and at a distance of 8.6
; feet from the bottom rim of the cavity. Since Nodal Point
193 is located above the cavity, the applied stress on the
top end-face of the cavity contributes to the radial
displacement at Nodal Point 193 in a radially outward
gt, and <“he applied stress i~

on the bottom end-face of the cavity contributes to the

direction for the arrival of P

radial displacement at Nodal Point 193 in a radially
inward direction for the arrival of Pgo. In Figure 13

ag, the high frequency components with a period of -1 milli- g

second are superimposed on the low freguency component as
shown in the seismogram of Nodal Point 193. As Nodal Point
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193 is located very close to the top of the cylindrical
cavity, the location is very sensitive to the motion on
the immediate top end of the cavity, therefore, the wave
PJP2 is the type of the wave traveling periodically

from the top rim of the cavity to the axis of the cavity
with a period of 1 milliseconds. On the trace of Nodal
Point 172 in Figure 13 ay, the high frequency arrivals
with a period around 1.2 milliseconds are superimposing

on top of the low frequency response. The wave Pgbpgt
is the type of the wave traveling periodically from top

to bottom of the cavity along the vertical wall of the
cavity. The long period wave is shown on all the traces
in Figure 13 ag. This long period waves is identified
as Pgbpgt, traveling with the P wave velocity in the shot
hole between the two rims at 2b and 2t. The Nodal Point
152,131,111,90, and 70 are located in the first layer (
weathering layer), all the high frequency arrivals are
filtered out in the seismogram of Figure 13 a, and a,'.

3 3
The weathering layer behaves as a low pass filter.

In Figure 13 al' and az', seven arrivals, Pgt, Pgb

3t 3b 3b_ 3t 3b_ 3t 3b_3t_3b_3t 3t 3b 3b 3t 3t
Sz ' S2 ¢ P2 P2 P2 P2 ’ P2 P2 P2 P2 Sz, PJP2 P2 PJP2 P2 PJP2

and the multiples of pJPgtpgprpgbpgthpgt are identified,
likewise the arrival of Pgth also is identified on each

seismogram in Figure 13 az'. In Fiqure 13 a,', the
. 3t 3t 3t 2t 3t 2t 2b_2t_2b_2t_2b
arrivals of P2 ’ S2 ’ P2 P2 P2’ S2 S2 SZ’ P2 P2 P2 P2 P2 P2

2b_2t 3t_3b, 2t 3b_2t . 2b_2t
P, P3 Pz, P2 P2 P2 P2 P2 P2 and the multiples of P3 P3 are
identified on the seismogram of Nodal Point 193; the arrivals

3t 3t 3t 2t 3t 2t 2b 2t

L ] 4
of P2 ’ 52 » P35 PZ P!, P2 P2 Sl' P3 P3 Pl and the multiples
of Pgbpgt are identified on the trace of Nodal Point 172.

Eas
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3tP'

For the rest of the seismogram the first arrival of P2

is clearly identifiable. In Figure 13 al' and az',

the wave with a period of about 1.6 milliseconds as marked

1

by "A" on the seismogram of Nodal Point 172 in a2' is

identified as P P3bp3tP P3t on the basis of the travel path

J2727J 2 3b_3t, .3t .

and the travel time. The wave PJP2 Pz PJP2 is the type
of waves traveling periodically from bottom end-face of
the cavity, through vertical face of the cavity, then to
the top face of the cavity with a travel time of 1.6
milliseconds. The direct shear wave sgt
identified on the seismogram of Nodal Point 193 for Model
I1TI, Figure 13, al', a2', and a3'. ot gte long period
waves in Figure 13 ag and a3' are P3 P3 P2, which
travels with a P wave velocity of the filled drilling hole
periodically along the vertical face of the hole between
the top and bottom rims at 2b and 2t. The shape of the

input forcing function is well preserved on each seismo-

is clearly

gram.in Figure 13 ays ay, ag, al', a2', and a3' as
indicated by dash lines.

Line E

Figure 14 shows the synthetic seismograms of the
radial displacement Ur and the vertical displacement Uz
of Line E at Nodal Point 314,335,357,378,400,421, and 443
as shown in Figure 7. Line E is situated diagonally
with respect to the bottom rim of the cylindriéal cavity.
Therefore, the radial and vertical displacements shown

in Figure 14 a; and al' are identical to those
displacements in Figure 13 a; and al', except the
vertical displacements in Figure 14 al' are in the

opposite direction and are negative as shown in Fidure

13 al'. The seismograms as shown in Figure -14 a,

i
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and a2' are identical to those as shown in Figure 14
a; and al' until the arrival of Pgth in Model II, the
half-space. Since the nodal points of Line E are located
in the half space and far away from the layer interface
and the filled drilling hole, the effects of weathering
layer and the filled drilling hole on the early response ©f
the radial and vertical displacement at tpege nodal points
3t

of Line E are insignificant. However, arrivals, P2 Py,
3b 3t 3b 3t 2b_2t 3b 2b_ 2t
Py Pyr Py Syr Py Syr Sy Ppr P3Py Pys S378ys P3PSy,

2b_2t_2b 2b._2t_2b 2b_2t . . o .
P3 P3 P3 P2, P3 P3 P3 S2 and S.°S P2 are identifiable in

373
Figure II-14 a, and a3'.

Line F

'Figure 15 shows the synthetic seismograms of the
radial displacement Uy and the vertical displacement U, of
Line F at Nodal Point 192,150,108, and 66. (Figure 7) For
Model III, Nodal Point 192 is in the half-space, and 150

108, and 66 in the weathering layer. In Figure 15 a

and ay, the arrivals of the waves Pgt, Pgb, sgt, sgb, Pgbpgt

3b_ 2t 3t . 3b_ 3t
and PJP2 P2 PJP2 and the multiples of P2 P2 r and

PJP;ngtPJPgt are identified. In Figure 15 aszs the
. 3t 3t 2b. 2t .3b_3t _3bI3t. 2t
arrivals of the waves Pz ’ 52 ' P2 P2’ P2 Pz, P2 P2 2

Pgbpgt and the multiples of Pgbpgt, Pgbpgt, and Pgtpgt are
also identified in the seismogram of Nodal Point 192, which

is in the half-space. The arrival of Pgt, P3bP3t, P%bpgt,

3t 2t , .3t 2t., .3t.2t.' .3t 2t., 2.3b_3t %t.,
pyte3ter, p3%p2%sy, P32t , p3%R2%sy, P3P %R e) and
2b, 2t
2 P

2t ' 3¢ ¢’
the multiples of P , p3bp3t, p3tp2tp p3tpltg

P ’ r :, and
3b_3t.2t, 272’ "2"2"1" "2 "2 "1

P5 Pz P2 Pl are identified on the seismogram of Nodal Point
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150. Since Nodal Point 150,108, and 66 are all located

in the weathering layer,which behaves as a low-pass filter,
all the high frecuency responses are filtered out in the
the seismograms of Figure 15 az and ai. Several beats
are observed in the seismograms of the the radial displace-

ment Ur in Figure 15 ajys 2y, and aj.

The beat phenomenon is commonly observed at two
wavetrains of slightly different frequencies beat together
to give the beats and the amplitude modulation. In the
present case, from seismogram at Nodal Point 192 in Figure

15 ajr the period of the envelope of the beats as marked
by "beats" in the time interval of 6.8 milliseconds and
11.8 milliseconds is measured to be 5 milliseconds, and
the period of the amplitude modulation on the seismogram
of Nodal Point 192 in the time interval of 8.6 milliseconds
to 9.3 milliseconds is measured to be 0.7 milliseconds
Therefore, the frequency of the envelope of the beats and
that.of the amplitude modulation are found to be about
196 and 1333 Hz, respectively. By knowing these two
frequencies, the periods of these two wavetrains are 1.3
milliseéonds arnd 1.7 milliseconds. Therefore, these two
corresponding waves are identified @S Pnggt, which travels
periodically from the bottom to the top of the cavity along
the vertical face of the cylindrical cavity with a period
1.2 milliseconds and as PJPngStPJP;t , which travels
back and forth periodically from the center of the bottom
(or top) end-face of the cavity, to the rim , then travels
along the vertical face of the cavity, to the center of the
top (or bottom) end-face of the cavity through the rim with
a period of 1.6 milliseconds These beat phenomena are
also clearly observed on the radial displacements of Nodal
Point 150,108, and 66. A typical beating phenomenqp is

shown in the seismograms.

PSP )

-

oy

B
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In Figure 15 al' and a2', the arrivals of the waves 1

3t _3t _3b_ 3t 3t 3b.3t .3t 3b_3t 3b_3t. _3t
2 7 S3r By Py Sys PyTPy Py, Py Po Py TS, POPS TP TPIPS T

and the multiples of Pgtpgb, p3bp3tsz, p3tp3bpdty g

: 2 "2 2 72 "2 T2
' P pPp3tp p3t are identified on each seismogram of the
: J 272732 3¢

nodal point. The arrivals of P2 P2 are also identified

on each seismogram as shown in Figure 15 az'. In Figure

1 ' . 3t 3t 3t 3t 2b_2¢t

i 15 asz's the arrivals of P2 ' 82 ' P2 Pz, P2 SZ’ P2 P2 Pz,
; 2b_2t 2b_2t 2b_2t 3b, 3t 3b_ 3t

P2 P2 Sz, P3 P3 P2, P3 P3 52, P2 P2 P2, P2 P2 82 and the

multiples of Pgbpgt, Pnggt, Pgbpgt are identified on the
seismogram of Nodal Point 192. The arrivals, PgtpgtPi ' ﬁ?
3t 2t., o3t.2t., ,2b 2t;, ,2b 2t 2b_2t |
P2 P2 Sl' S2 52 1’ P3 P3 Pl' P3 P3 Si and S3 S3
identified on the seismogram of Nodal Point 150. Nodal

P S

'
Pl are

T

RSV Fofon. \3

Point 108 and 66 are located in the weathering layer, only

the arrival of PgtPgtPi is shown. In Figure 15 al'

and ?2.’ the wave in each seismogram with a period very

close to 1.6 milliseconds as marked by "A" for Nodal Point

192 in the time interval of 6.8 milliseconds to 8.4 milli- ;
seconds, is identified as PJpnggtPJPgt ‘
periodically from the bottom end-face of the cavity, throuch e
the vertical face of the cavity to the top end-face of the '
cavity. In Figure 15 a3', on the seismogram of Nodal

Point 192, 150, 108, and 66, the wave with a period close

to 5 milliSeconds as marked "B" on 192 in the time interval i
of 6 milliseconds and 11 milliseconds is identified as |
P2bP2t with a velocity of the filled drilling hole. In l

373

Figure 15 al', az', and a3', the form of an input step

pulse is well preserved in each seismogram, the amplitudes

, a wave traveling

of the vertical displacement are larger than these of the .
radial displacements. The arrivals of Sgt

on the seismogram ‘i
for Nodal Point 192 in Figure 15 al', a2', and a,' are
well identifiable.
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Line G
Figure 16 shows synthetic seismograms of the radial

displacement Ur and the vertical displacement Uz of Lire G
at Nodal Point 191, 170, 149, 128, 107, 86, and 65. For
Model III, Nodal Point 191 is in the half-space, 170 in
the layer interface, and 149, 128, 107, 86, and 65 in the
weathering layer. The locations of these nodal points are
along the Line G as shown in Figure 7. The locations
of every nodal point along Line G are very close to the
locations of nodal points along Line F. Line F is in the
same direction but with a distance of 0.5 feet away from Line
G. The wave forms of the radial displacements at Nodal
Point 191, 149, 107, and 65 in Figure 16 ayr 2y, and as
are very similar to these of the radial displacement at
Nodal Point 192, 150, 108, and 66 as shown in Figure 15
ayr ayy and az, except the amplitudes of the radial displace-
ment. for Nodal Point 192, 150, 108, ard 66 are smaller than
these for Nodal Point 191, 149, 107, and 65. There are
high frequency component responses observed at Nodal Point
170, 128, and 86. In examining the configuration of the
finite element mesh around Nodal Point 149, 170, and 191,
as shown in Figure 5, these high frequency components
may be resulted from the different arrangements of the
finite element mesh at Nodal Point 170 and Nodal Point 191
as shown in the following diagram:

149

170
i

191

A
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So that Nodal Point 170 responses to a high frequence w
radial displacement more efficiently than llodal Point q
191 or 149. At Nodal Point 170, it can be viewed as if
two horizontal springs connected with two adjacent nodal
points, contrarily to that at Nodal Point 191, there are as
if four diagonal springs intersected at the Nodal Point.

In Figure 16 al' and a2', the arrivals of the

i

3t _3t _3b _3b _3t_3b_3t _3t_3b_3t :

waves P2 R S2 ' P2 R S2 ’ P2 P2 P2 R P2 P2 P2 Sz' and éi
3b,.3t 3t . 3t 3b, 3t 3t . 3b_3t

P,P, Py PP, and the multiples of P, P5"P5", P, PP, "S,, !

2°2°2
and PJP;ngtPJPgt are identified on the seismograms for

Nodal Point 191, 170, 149, 128, 107, 86, and 65. In
Figure 16 a3', for Model III, the locations of Nodal
Point 191, 170, 149, 128, 107, 86, and 65 are in different
regions, therefore, the arrivals of the waves are identified
each Nodal Point by each Nodal Point. The arrivals of B

waves Pgt, Pgbpgtpz, Pgbpgtpz, sgt, stgt, Pgtpgtsz, j
Sgbsgtpz' Sgbsgtsz' Sgbsgtsz' Pgtpgtp3' Pgbpgtp3' Pgtpgtpz E
Pgbpgtsz' Sgt' Sgbsgtpz' Pgtpgts3' Pgbpgt53' Pgtpgt 3’

. - SgbsgtP3 are identified for Nodal Point 191. The arrivals

! of P3t P3b 3t 3b 3t 3b_3t 3b 3t 3b_2t

2 + Py« 857, Py P, Py, P, P, Sy, S, , Py, Py P, Pi, :
Sgbsgtp3 are identified for Nodal Point 170. The arrival,
2b_2t 2b_2t 2b_2t 2b_2t 2b_ 2t
3t_2t_, 3t 2t 3t 2t 3t.2t 3t 2t 3t.2t
P3 P3 Pl' P3 P3 P3, P3 P3 Si, S2 52 S3, P3 P3 S3, S3 S3 Pi,
SgtsgtSi are identified on the seismogram of Nodal Point
149, The arrivals PgtpgtPi, P;tpgtsi, PgbpgtP', PgtPgt 3 '
3t 2t . e .
P3 P3 Si are identified on the seismogram of 128.. Only

the arrival of PgtPgtPi is clearly shown in the selsmograms

of Nodal Point 107, 86, and 65.

S UP
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Because Nodal Point 191 is located right on the
vertical interface of the filled drilling hole, the
location is very sensitive to the motion on the top end
of the cavity. The seismogram of Nodal Point 191 in
Figure 16 a3' shows that the high frequency components
are superimposed on the long period components. These

high frequency components with a period of about 0.5
milliseconds as marked by "A" on the seismogram of Nodal

Point 191 in a3' appear in the time interval between 10.9
milliseconds and 11.4 milliseconds. As the traveling
path of PJ is 0.5 foot, and the top end-face of the -
cylindrical cavity is in contact with the filling of the i
drilling hole (a P velocity of 1000 ft/sec), the high

frequency components likely are excited by PJ, traveling ¢
periodically on the top (or bottom) erd-face of the ﬁ
cylindrical cavity. On the other hand, the long period ié

component in all the seismograms in ay' can be identified

as Pnggt, traveling periodically between the top and bottom
rims as designated by 2t and 2b along the vertical interface

of the drilling hole with a P wave velocity in the drilling

pr

hole of 1000 feet/sec and a period of 5 milliseconds.

Nodal Point 149, 128, 107, 86, and 65 are located in the
weathering layer, therefore, most of the high frequency :
response are apparently filtered out. 3

Line H

Figure 17 shows the responses of both the radial
component and the vertical component at Nodal Point 190,
140, 106, and 64 along Line H. All the nodal points
along this line are on the top region of the cylindrical

cavity source. For Model III, these points are located
in the filled drilling hole. Similar to that of Line G
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and Line F, a beating phenomenon is again observed

in the time history of the radial displacement at

these four nodal points along Line H for Model I and

II. In the present case, these beats have much

smaller amplitude modulations than these of ,

Lines F, and G. As nodal points along Line H is located

close to the axis of the cylindrical cavity, therefore,

the radial motion of the top end-face of the cavity

contributes to the vertical displacement significantly.

The high frequency response due to the radial motion of the

end-faces of the cavity is c%gagly ogserved on the synthetic
t t

seismograms. The wave, PJP2 2% PJP2 ¢ is clearly

identified in the seismogram of the vertical displacement
Uz, which are very similar to that of PJPnggtPJPgt in
Figure 15, and Figure l6. For Model III, Figure

17 a3', because the nodal points are located in the
drilling hole, which is filled with unconsolidated material,
the amp}itudes of both the radial and the vertical
displacements are very much amplified, for instance an
extremely large amplitude wave is observed at Nodal Point 190.
The wave is attenuated rapidly as the observation point
moves away from the cavity (see both in Figure 17 ay
and a3'). In Figure 17 as, at Nodal Point 148, the
waves Pnggt, and Pnggt apparently travel back and forth
periodically along the vertical interface between the two
rims as designated by 2t and 2b. At Nodal Point 148, 106
and 64, the most pronounced arr%va%i ;re indicated on the

t t

seismograms. The arrival of P3 Pg P, with a period of

about 5 milliseconds is indicated on each seismogram of

Nodal Point 148, 106, and 64. .

P —— -

-

-l




Line I, J, K

Figures 18, 19, and 20 give synthetic seismograms
of the radial and the vertical displacements at the nodal
points along Line I, J, and K. These three lines are
located in the region bellow the bottom of the cavity.
Geometrically the locations of these nodal points along
these three lines are symmetric to those of nodal points
along Line F, G, and H. For the whole-space case, the
symmetrical responses of the radial and vertical displace-
ments are displayed in a, and ai of Figure 18, 19, and
20, and can be compared with the results of a; and ai of
Figure 15, 16, and 17 to be exactly identical. For
the half-space case as compared with the whole-space case,
the only difference is the arrival of additional reflected
wave Pgt?z from the surface of the half-space as indicated

on each seismogram for each nodal point as shown in a, and

aé of Figure 18, 19, and 20. For Model III, the layered

half~space case, the synthetic seismograms in general are

quite similar in appearance as these for the whole-space case,

except the additional diffracted arrivals.

+ e

All the above interpretations are limited to the
arrivals in the time interval of 0 to 15 milliseconds.
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7. CONCLUSION

The present study has demonstrated the possibility of
obtaining the numerical solutions for a finite length energy
source within a half-space, and a layered half-space by means
of the finite element method. The significant results
regarding the displacement field due to a finite cylindrical
cavity source in a whole-space, a half-space, and a layered
half-space, may be summerized as follows:

1). For the observation points inside the medium, the
reflected waves from the surface boundary of the half-space
for the velocity of the medium assumed does not seem to have
significant effects on the amplitude of the wave.

2). The amplitudes of both the vertical and radial
displacements at the observation point on the surface of the
half-space model are much larger than these at these corres-
ponding observation points in the whole-srace.

3). The wave forms of the transient response strongly

depend on the dimensions of the finite cylindrical cavity, i.e.

the radius of the cavity, and the length of the cavity.

4). The type of P wave traveling periodically from the
top rim to the bottom rim of the cavity along the vertical
interface of the cylindrical cavity and the type of P wave
traveling periodically from the bottom (cr the top) face of
the cavity with a motion described by the Bessel function
order zero, through the vertical face of the cavity, to the
top (or the bottom) face of the cylindrical cavity alse with
a motion described by the Bessel function order zero are
dominanted in all three models.




Ty —

5). There are no vertical displacersants Uz at any point
along the middle plane, which is symmetrical with respect to
the two end faces of the cylindrical cavity, in Model I - a i

whole~-space.

6). For Model III - a layer half-space, the long period i
wave is clearly identifiable, traveling periodically along
the vertical face of the drilling hole between the two rims,
the rim of the contact at the layer-interface and the top

rim of the cylindrical cavity.

7). All the high frequency arrivals are filtered out
in the seismograms at those observation points located in the |

weathering layer. The weathering layer t=haves as a low
pass filter.

8). The shape of the input forcing function is will
preserved on each seismogram of the vertical displacement
U, but not the radial idsplacement Ur'

i

. ' 9). The beat phenomenon is clearly observed on the radial

. displacements of these observation points located in the upper

¥

region of the cavity source.

10). The amplitudes of both the radial and vertical dis-
placements are extremely large at these okservation points close
to the cavity in the filled drilling hole, but are attenuated
rapidly as the observation point moves away from the cavity.

11) . Shear wave can be generated frcm the finite length
cavity source with only normal stresses arolied on the-

surfaces of the cavity. The arrival of shear waves are
clearly identifiable at these observation points in the region

along the diagonal line of the cylindrical cavity.




sz9j30oweIRy I9POW °T atqel

%A XA 08voE .:oﬁ X 0TL98°0 0¥°0 0°¢
886L8 00¥esT H._..o.H X LgeEBY"O s¢*0 §°¢
¥8cec 09609 ._..ﬁo.ﬁ X 6£605°0 G€°0 AN A

m

(o9s/wo) (o9s/wo) ANEo\mm:hvv oTaey AmEo\Emv ]

m> &> SNIOPOW s, bunox s,u0ssT0d A3Tsueq unTpaW ;




p—

51.

N.P.

g

H

S

T T Y

nr

- - -
“ & N
~ n =

- » -
= - -
- ~ H

10 fag e
LIS TR
it

i
[ X

L

3
LAY

5

s

b
9

LELIMEL aa s

—r-

Y

r-r

uagt e _
[ ¢
it
et L _ .
aFa e fofe - =
0r, b, 0,0
Il-n\’n&‘ l
e, t
YT
[P
atdiac
€0, 8, 0,0
oo le, 0%
] 3
Sredang
e, 8
-—LD-—.
wa, ot P>,
Bactene?
¢
“®
v
wé
v~

) .114.9 .&

@®
(wa, o) n

e

LN3IW3oVdsia

« A e n ® &
T 2 =2 =22
= % & 8 3 3
.-"a-.".ag
[ 0,00, 50004"s
e, e, te
LTI LA
-
[ [ [
whisae®
i, 1
wtiract
’ t,
L whinet
gt
win?
¢, ¢
acfanc®
- -
g,
gt
e, ¢
whet
l.a
v
t
u.-
—Trr———y

© < o
(wd,.01) 'N  ENINWIOVIISIA

-0
Lo ¢
)
o
@
v
L
E
w
v =
T
(o]
-
o
&Y
T
es
(%]
Q
"
1
=
3
w
lsm
T
(o]
~—
(]

PRI ~ -
¢
T S, e,

S

| ¢ CH s»-n.

(]
ﬁl adargd

- A e e e
e 8, b, A ~ & " a s =
~4 Oetagt 4

[N ¢ -
[ efasia 1afe"e - -

[
Sagdugd
Waate
et ».
daieyafefi
H —_
farsiafe
-.N.-“.-’"‘ﬂ.
[ -

At
L
[T
t t
gt

--..:..>.n.... —_

[
MU T

L

(wa, 01)°N LN3W3IJVdSId

« w e =
2 = =2 =
= & A& =
-t tF
.nun-:.-
[ g0, 8, o
BT
e, 0,
CIRTR
-

.

3

!

3

L At S e St s g

. . .
= adinag!

T, ot
sefnangt

€, €
wiag?

0,
aact

0, t
adang!
-

t, ¢
adna?
€,
Wt

t
w

o]

120

- o
)
. .

.

TIME (milli- second)

-

Ly

T
o

]
S
TIME (milli-second)

_..WJ.411
@ <

{wa,01) ‘N LN3IN3D

o
v1dsia

e
ns
ERLY
ne
n
2y
120

g 14 €
uta

gyt
T
G, ot
atfsdinagt

e
g, 0, "
Qetacbract

et
Pagfactact -

T
10

T
S
TIME (milli -second)

——

second)

illi

0

TIME(m

[

{ IR
© . < b .
(w3,01) ‘N LN3IWIIVISIQ

™
[ 4

10. Synthetic seismograms of both the radial

and vertical displacements U
response of Model I, II, and

Figure
in Figure

r of the transient
III aldng LINE A as show

and U

7.



N
LA

Nt _ I -0
}
ﬁ 5
- gs
(¥
]
N | !
o) =
E
m w
o Fo =
ﬂ | ond
[
o
~—T ) -
._d < o al
(wa _o1)*n LN3W3JIVIdSIA
Ay
= : 333 B 23
F [
ﬁ.n.’—".n..ﬂshs: y
.u.-."-s. W - Ny
! - T —
) 2N Lo 2
- -0
©
" an “
Ur‘ el T 4 - q...m
OIS w m
et o e Y
W...-n-..".... .
e, et
f. .ﬁuh‘h ¢
.M.L.
W v".
o
SIS -
M ©

(w2, o) 'n LNIWIJIVISIC

’
]

¢
1

[
1

<
L

g

§

oA
18,0,

1, 0,F,
1t 4y

[ m 2
...M-LlllLul 5
3 Q35
o
&
L
w
ut
9 n 2
T

(o]

& 14‘4— ¥ d '2

(wd, 01)'n  LIN3W3DVdSIQ ®

37
t2l)
1%y

BT 8,
et Gt b e

e 0,8, t¢
UYTOL LA
[ LN P
Garg? gyt e
Tr

ac? Yoty ¢

T
o

T]ME(miHi-Second)

¢, T
TR

e .t t,r
TR

[T
Aac® gt

LT 4 e
LSO OS]
Fo 8, e
Cayiayofe

!
—
S

(w3 ,.01) '

—r

v P
1N3W3DVdSIO

(o] o~

(wd,.0n™n LN3IW3IVIdSIO

pay -
. I - A T 15
ﬁ-‘".:"-.?a".
W RIS . 4
s i o=
d o8
w o-".a"-.".a"; m
i e, 0, «
e 1
[ =
W ...".._-u E
L feyls - Wi
.Tl 's,te Ly lMl
-
” -—". L L
vw. -:. .L =
5
. w
o
v —r—r— -m
® « o «
(ws, 01)*n  LINIW3IDVIISIA
= A &% <3 — o
ﬁl -
[ -
[ : :
ﬁ t
W h 4" ﬁl —
= o
1 o
'lo - v
! - b
3 -
| 3
[ u
|- ﬁ ("2 m
! -
1
o
. T
@ v o o

ltw
o
~ £ 0
T oL
-oa.ls
H W
[=3//]
[
L N
< dPm
L 0
$ O Z
O & H
Q =
L]
“ oo
(o) [
NO
0N o
=] [1+]
Q<3
Mo
o H
g
0 oD
e [
Jnaao
n
£ -
O Q-
- EH
<0
Q0 -
Lo
43—
(ol ]
> Q
KR
. =
—~ e~
~ Oy
(1o
- Q
P 0N
b 3
[( ) B el o ]
NP> OH
o O fry
oG n
- oos
By @ M




@
—

|

F Y
i
DISPLACEMENT U, (10"'cm)

[

DISP%ACEMENT U, (10” cm)

@
|

—
U N.P.

v T T -
s & n 9

. Ly R LS

S 2.2, , 2.0 S £ T 7
N ~ = EZ.
P S T T

b
1

(]
s

v
|

L=

T L
D 10 15
TIME (milli -second)

[s)]
-

o
i
i
2"
0y
2

»

]
3

H
.
r
“
’
.J'

"

n

DISPLACEMENT U, (10 cm)
o
[ -

T T o
.
- - -
- -~ -
a - -
An a .
-

{ :.
»

3

wvit

o
DISPLACEMENT  Ua(10"'cm)
[+ 4]

)

n»
¢
iy,
¢
»w
" L[J
w
"
wit,
"
"
vite
H
s
"%

H
1.

o
L.

1]
N

@
)

x

'
1 .

A

.

DISPLACEMENT U (10™¢m)
(o]
L

TIME (milli -second) aé
i
T T T
8-
Pl g:: .-.:: 1
£ 45 2 i i- ]

DISPLACEMENT  Us(t0"'cm)

o]
W

TIME (milli -second)

T
10 15

o
W

—_

(o]

TIME (milli- second)

wi_le
1 "
)

veiielt e

STt
J

» o 2Vp 00,

TIME (milli -second)

Figure 12, Synthetic seismograns of both th; radial

and vertical displacements U

of the transient

response of Model I, II, and III algng LINE C as show

in Figure 7.




55,

N.P.

- T ..l - ..q..u.:".n; -\ r Faefarfagfate '}
) - e fay et v\ Yl {aguaiete
L o [ ,r,t tr
n Lt — Shtaaet !
4 = ——
A L e e o 9 = :C..?;T? _o 2
1 - m I f W - w
ﬁ - — u..- f= - -.....T»?... u..
s - - ) /— '
3 = SRR PRSI =
s E €
_ . l..m . ”“C.T:.T... IWM
[ - lMu ﬁa whiet N =
- - s [
-T A
ﬁ by .
- 0w
(o] (0]
—r—r—r T - — ) -
© < S g g ® < o A
{ws, o)™ INIWIDIVIASI {wy, 01)'N  1IN3IW3JVdSIa
_ = 225 = o _ 2 225 o
| ”_.. ST ﬁ u teafene
|
” L — ERIRY L ] LRLRE
N I_ l_ RN _ |_ IA et
- t, [A —~ - b te fe -
] u wlannac o ) ﬁl - ) ... ::.: o °
] -."-:»". W 4 '_ — 7] A - RTUTTY m
- - - 00, a - 7 Lt t, b
Srtanct ) i - rctuat !
1 = RRIRD .nm - RY ..m
W REORY vy RRORE w
- et -n = u e e DS
+ Facdanig v“ [ I; et -
L - l_ . . Ih it g,
"iags —- Tttt
M
[ R R
o o
— e —r—r—r——r—r—r
ST &3

o o o~
(wa,.01) N IN3W3OVIdSIa (w3,.0) "N ININIIVIdSIQ T

e U A R ST 8 A A R ¢ 1 VTV ST S TN @11

L3 r,

.
Sraetaitat

g1, 1
Saedane!

e, 1, et
“'metarctact
e, 8, U
“e'metuaciad
e,
SRR YR
ot
Yagter?
6,
w'ase?

[
.nvhnlnl

T Y

fole

[
ot tue

——r

TIME (milli- second)

Faamen

4 -
0

1
”
11
n
21
7
"

lllll

J
:'f
g

i

et
- LIS AL

t,

wéar?
e, 1

- Yartare?

ey ot
Saehrnn?

[ ¢
- ‘n.

T
10

TIME {milli - second)

T
S

A3

{ B

| S A
[} < o

(w3, 01) ‘N LN3IW3DVIJSIA

-y -

L

13. Synthetic seismogrars of both the radial

Figure

and U_ of the transient

T1z alofg LINE D as show

and vertical displacements U

response of Model I,II,

and

7.

Figure

in




,4‘ T e W T T s e
T T e L. Am e rntmﬂj“ :

A T . e = oA h - 2 r e @ . B -
° . 2 22 2¢% 33 EEI- - S N - 2 N
C‘SJ Z [ e le, befe b B ' [ Cafanfee \ N - [ faisag " ﬁll
[ e - I L
[ tgeat, 1.0 ..l i tlafenate ey ] - w AT = -
i acrnat it - S LS
vr. 8t L0 o — [ faeltyrie- - ..M %‘m
SFangse - NS _
[ i . ¢ 5 q el - g © -~ 0
AIRES -1 lo 3 [ el e -1 o £ - ot - O Ci e ny M "
aad - a af
* e dodefe = b ‘wm )= h M. tie | = -ul._l. ﬂ .
N = e tanbefe _ _) = 3 Ly le = E
=2 et X E r ..>: 6, - £ [ ...mn w w m M
i o o dqdrang ‘) 1Y) g T t, k- > O H .
T ..n.‘u“:_?... ﬁos b3 - “aaande ki |M| 7) 4 -..- z ~ ee = i
4 b 4 [ " 4
ﬁ -A—.-.:Aa-...:“- = . L ‘"-::. = m un-"- o “ Cm o “
¢ ."-l - ] [ [e) [ed {
M } } ™ NO
! p 5 % o] ﬂ
X t L K
m . « ﬁ e Nl - o O
wt -— Q HEoH
° o —— g"°h
— A s ¥ — T T - '3
T T 1 (] < d s @ o = H
© < Cdsig (wo, 01)*N  LIN3WIOVIdSIA - (wd, 01)*N  IN3W3IVdSIa CER
(wd, 01)*N  LN3IW3JVdS - . 3 5 5
s &
08KH
“ s s 1323 frz £ ;_ " IR T R wml :
et a2 2 =2 5 2 2 3 0 e e -2y f 1wt -4 - nd
S 17 i 11 vt 3 )[4 25
m Seaieie ey L s et — — { it O (I - m...A nVuz @.a
3 ] I._ i bl [ fndtart T - A7 0n-AYg -
L factune! b e e — IA o~ L - - — T o~
S N I.y - ®a?s1aac? ] o © L =1 - 139 4 to o . =
Testianact - o2 S e - u - M |- bty o - = M < —
e, 1, ~ u -9 P tactiia o . ‘n - :n_ o —~ @
“w gt — ° w Gt _— by LT Ny _ = — & [ IKe] 0
AR - .ﬂ. 3 . D ~ -.ru.. ﬁ -:m. e -] =R nn.m .hu U N
et o ~ =] . ..‘".»T' W ﬁ e = m N 0D
o .-4?»? E 3 — t ". - - ~ [O RV I = i o]
| ~ ! LRI w [ -a”.| = w H> 0~
i ST w [ Ll = - 0, =< Fo = o] [o ) T
1 7 n 2 e, o, = - R e = R
- et LT o - - o
[ el ". - . _ - S ) PRI ol ¢ | I o]
] A - [ (T e @ M-
[ [ o [
- te le b .""a.. [
¢, W
S w? . ﬁ. L ﬁ .
T3 . SIS o ey |
(w>,.on 0 LNINIOVIdsIa (Wa,on N LNIWIOVI4SIO (w3,00) N LNIWIIVISIa ° :
-
R . - .




-y — =T e LT S R

P O

Ay
/%J “ . ;o ~ Wt bfe r ﬁ. < Latartag tefa [Q — * = = -0
[ - et . ! et R ATIRL -
h ~.~u-nn_:>“nns @Ay dppaacd 4 . s."-nn- AT AR TRg 3 TV
s H [ : et T
f R R ) | Yfatannaise | X ”:..:..:.“.
- A Al A D &-Nl-bﬁhh
| —_ g \ 2,608, €0 S —
" -;_..::.»us... fo .W Wn 3 ~n R (o.m rﬁl q.:..”sb.mn l.o M.
- = o { " - = o
! - e, 0, 0T K ~ st | ﬂ ...”__.T::.; “
N 1 r e’ @« I Chinte ] t.. td
o 2 W, < - 3 = = =
I —~ fafa,fa  befe M ﬁ . Cafayfey, 840 W m | o "m
y y ~ o L A
ﬁ\ _ A\ fas:-;:.un..s ﬁns W.- [ Calarfaygfafe ﬁls M Wv o ts TRIRY o W&
X — . Bl —
| - - fayafate w Lt L -
- 1 oo
: ” i | .
L .
[ i
ﬁ o L Y S -
I T ™ - T - — T -
@ v o L @ ¢ o s ® < o s
{tws, _01)*N  LN3NW3IVI4SIQ (wd, 0)'n  LN3W3IVIdSIA (wa, o1)*n  LN3IW3IDVIdSIA
oy . . - - ERERTE - o o ~
z : H 2 = 3 : 2 8 R 5 ¢ e
m. -\ ﬁ * ﬁlmld ﬁ . ..-.:;-Bs o
-1 ld.‘z‘
, w ﬁ g
" = .Iﬂhzh
— | . REZRD
*.. |_I — - t_l — Toattigle —
- 2% - 2% o B Pl L3
i Ty % W —5"1 m W IA haedanet “
~ i | @ ~ A o [ -
w .n. RTINS '
Sel | = i = - el =
s L m i L E m T."-:-u. IM\
] = ] o oL, 80 W
[17] W_ [ Saetase o =
- ] -0 = - 0 = B KON I~
| -] - 3 L [ [
. — L F - St
M ] o
[ B N : , afale
3 w0t W At e s
” N .-"- b ' Erid °
! o e o . 3
— —r——y . U R
—~—r —i ' T ~— ~N . o
ST &t STTI T ST s

(wd,.00) ‘N LN3W3OVdSIO {wo, 01) N AN3WIDVIdSIA

(wo,.00) ' LN3W3IVASIA

—
[ IS e
-~ 5 0
T Q.0
)
H 0
o n
2gs
H o
L o0 M
$O2
O WVH
e} &
LY
“HCcoD
(o] o
N0
n o
E ]
[\ e
HoaH
g5
E M
n OTY
L) [ =}
QO unm
0n o
g -
g g0
+ 0
v O -~
LomH
42~
(oo N
> 0
AT -
3O~
* e
(TaI]
~
0o
-l e
P 0N
Hu3
oY
N> 0
o] Qe by
thg 0
~A U
by @ NeA

ke




57.

s A~ ae o -
NI T 5S-SR
roe, 0
oyttt
20,2 e,
St
e, e
L YLTPPL

-1, 8, 2t
Ol iagt ¢

T
10
econd)

~.~. -; ~.~s [V}
e p WAL ._|
-s....ugn::... Im
w
. - .C... - m
s ottt =
[ N
L -"A
‘ o
STy
(wo, 01)'n  LNIW3OVdSIQ
g ( (¢ 75 -0
| h
L
ﬂ —
. oy
S -0
S (5]
[}
E v
[ {74 T
w)
- 1_ o 2
W L ﬁ |
[
4 o
o ¢ o ~
(w3,01) ‘N INIW3IDVSSI @

(3]
L1}
9

(wd,_ o) ‘N IN3WN3JVIdSIO

-.s.—“s-.".n. ﬁl—hld
._”.a..ﬂs-:’"sqs
t ~s~s.n-:>n.n.
Fafa fagaiete e} .nnu
-=fayge w
ot  E
)
.....n..:n.... |~ w '
-
fofa,faygdete
t
ste o
v —T -
(w3, 01)*N  LNIWIIVdSIA
[ W [
s
[ _0 ¢
N -0
L H °
L~ 4
ﬁ I
SRR £
[ L w
= - =
g .l._ a
F =
[ L
o
v
[+ A.w JO aZ

T

i

(w2,.01) ‘N INIWIDV

o

second)

TIME (mili

ifi- second)

TIME (mi

. ™M
dsig ©

and U_ of the transient

del I, II, and“III aldng LINE G as show

16. Synthetic seismograms of both the radial

Figure

and vertical displacements U
ponse of Mg

Figure
res

:

in




o 58.
v N.P
z .
Ur N.P.
£ AR o g L L~
E 8+ E &9
S8 P I
[ ] o ] 3
S ! LL L Dl BN TTY 5
4 -
; 1 ——L—JL\/VLV\M-W 148 5
g s
- 2
d | 190 O
] S | Il <
=4 2 - . |
a - L) ! 3.)
(7] v 2. ‘ it
5 e & P e — B
: ' 5
S 10 ? ' -
a]_ ° TIME (milli -second) i a]_ TIME (milli -second)
g .
— ML B B S B ! SRR T :
E 8- : =g
S [ w E®T
i 2 L e
S ] l L’. 1 Pt~ 106 \‘ ~ ]
! S
q- : 4]
'.2- _LJ\NJAW\MNV\/VV\A i} ; ; ]
w : bl
= i s
w ] HO, w
: < i \ | o
£ . do‘ 2. =.._ . -y i jo—
a Rk * F— . — S
‘ , ~©
é 10 5 at
220 TIN:Z {milli -second) | 2
{
L e T 7 1 ; T T T T T T ™1
- T ’“8..
58‘ —_— .5 _J/\/ .
'g ‘ tee .2 ] r____/\—_’_\
‘» :3 f:" ,I 5 J | 108
4 :..' - 4 10
= S A =
z W z .
v :‘:;‘. 1% g A
5 B L E
(& * Uo - o -
s ) Ej
(V Q ‘z [ -
o a
T 1 ] v 1 l
230 s 10 5 a3 o 5 Q. s
TIME (mili- second) ; TIME (milli -second)
¢ Figure 17. synthetic seismograms of both the radial
and vertical displacements tJr and U_ of the transient
response of Model I, II, and III alSng LINE H as show in
! Figure 7.

DU X

-

e — -
i o L aaeis

PRI N

T T e i 4




Had

—r

« Ny

AN ¢

A

N
o]
+

! .
i o
-4

~
o

ot 2 2 £
2 2 2 3
rl )5
e,
wlne?
0,
et
[
S ..w.g"-f:u"...
[ i
s —~
Foee, 8, te b
o gt . O <
t, - O
1 At tiag (3
[ Yo ta fafe u.-
s ¢ '
L ‘ =
ge, 2, .t
[ o ongaasiote Im\
1 w
_ Lo Z
. -
4y
.
J-.-
t
e o
—r—r—v— ]
© < (o] -

(w2, 01)*N  LNIWIJVIASIQ @

» -0
4 X
[ H =)
i, es
- (3]
¢ 4
—, - |
- £ y | m\
u
m. - B . F0 2
., L =
-". - -
-"s
«* .
RO °

[T
[ ] v o ~-

(wa,c) 'n IN3IW3OVIGSIQ  ©

.rn
0"-.-? =
A t+o®
-9
-...sa..-»"sn .n\“
."..:T == A
..nsnng.:".... llmu
| 24, -0 Wu
-
LA
whele
“
‘“h o
T
[+ 4] < (@] -y
(wa _o1)*N  AN3IW3OVIASIC w
_ ” - ~ - 15
L o€
iy 9
Q
IH - n
A
. - g
| g
- | — IS.”
-
-
[
<t
3 .". o
)
[ L o ~

(wa, o) N LNIWIIVdSI@ w

- - z -
= - -
- - - -

0
T,
. -Q6"
_ )
[ 13
“
L L]
[ -.n.nnsx.m.n. .Iﬂm-
ﬁ o
.rl.s..- (5m
: -
ﬁ.....
[
o
-
(]
_ 2 E o
-l B
-3 |.w.m
S N g
. N
i =
s — E
” 4 |t
- -
s 1 — =
i —A
[ “
[ -
S
L <
: o
o
¢
7 -
@ < o . o

{wd .01 ‘N LNIW3IDVdSIQ

~
o4z
e 5 O
T 0q
-0
N W
c 0
[ ]
O
P
L 0Mm
Doz a
O H &
Ko |
('] b
- o )
(o] o i
NO
"nidel
i ]
Ve ]
N o
WJaI
-
£ N
now '
- [ )
[WIROI
n P !
oo~ .
OO+ '
B! ¢
0 [
O =~ :
L "
4~
o Quet
>0 o
n-AY .
T or~ .
. X
Q0 ~i
~ S
o
o 1]
EE I ) BV
Mg
voOocChh
NP> O0A
o] Qu by
.ovo wn
—“ a0
By © & -A




T

4
60.
N.P.
U, - U, N.P.
- T -~ T r ] T ETE T A s T ET
E B8 E 8T a. S t- g..‘ P P ‘.-
o S < Ll S SO P O
o 1 b. o=, I m— DR 1 L Y B~ 5. &~
S [T A . g T LR S
S ] . na :" x n
- 4 A A A AP A, 3 - 4 .
l“Z.’ .—-L»L'V\,-L\NW-N\/\NMN\ 'Y 2 9
= i e AN g 1 —-\J\}\/“\/\Wﬁ ™
g A | ‘L e T 7Y 8 < s
50-—‘ [ N N | — a1 j o- b
% L ~— a3 % W'\W o
a 3 e e e =L
T T =1 T V }
a, © S 10 15 a* © 5 10 15
1 TIME (milli -second) 5 1 TIME (mifi-second)
}
Tt Ty TS 7 =3
87 ‘ & |+ I SRl S AN
1 L¥a % P e — DR B o\ T NP SO S
- A . i T

|

b4
e e s

DISPLACEMENT U, (10” cm)
e
B

DISPLACEMENT  Us(10™'cm)

T
10 15

o
w
>-
G
1}

as - 2 © 9 .
TIME (milli -second) TIME (mili- second)
" e ey e T
E 8 - £87 |“ R S P A A )
2 o4 la, A P e : § . ’.- A T A
'c o, A2 : 1 ' e ) e am ES -
= 4 - " . .2 E : : : ’:-\ -:: :-. A N
- n ~~ n2
> k=]
4 A ”» 44
; -—-L’JL\N'lM\NV“‘\/\/\/V\/\/\/\/\ ey [= m
[77) 4 ] JL J.¥ P e Y, W T 1Y 5 F
. i )
§ | | A—m— 19 E' 1 . / :::
< 0.l | P | —~—— a? ' ‘<-’ o : "
§ . | | ] o i —_—I\I_J——l—)'l_\'k’\i\j\’w “wr
a " R B Ry T SR A
o
T T — :

N
W
o
wn
o
v
n

1.
0 5 10 5 :
TIME (milli - second) :

W

TIME (milli -second)

Figure 19. Synthetic seismograms of both the radial
and vertical displacements U, and U_ of the transient
response of Model I, II, and III algng LINE J as show
in Figure 7.




TR i _ . .
1
[«9) .
a = or, ot e : : : : — [~ tafeleg lefe p p . ; v [ fefegdatee y : : : [7s)
\O [ 'Foqaniefe .I% [Te) Sactnit P v) : *ung ﬁlll .qla o
d -
BRI ﬁ Cafaglasniata’e [ tafa iy, adece — o0
[ [ o I I =
[ t } e 0, e M-~ 0
o b o e s VY
+ — i -_.-a..::".w. — ,v. — cw
[ -\-_-hs-l-.... o) .ﬂﬂu = Lfagdanalete TO‘W - -s:aus.»"s..- Lo .M.. L m m o
- = m [ =3 ” -9 P
N ”-.5.0.\;.-‘. .ﬂ- -s..sn";".w- e“- [ -.ns-"f"s.. M com
= [ LP ) Lt =N w B0, 0, 05 = n B e 8y BT = Yoz
: Fage e IM\ ﬁ LA UNTIR lm ” RPN TO IW\ \m + m
. ,rl..».h.lnnq. _ W._ ﬁ-...;om..:”.... Lo = [ e aq{ayy0ie"s -0 W._ Y4 CO.. o
[ .....L.:n._.. - L Safagfey fefe - m falagfey qafe - © &
[ teactatt Faqterife [ fagday e 0no e
ﬁ ‘1500 am. H I SING [ Foqiange B m o] d
E et [ s . it HOoH
W ¢, cn- ” T ” 1, o' m.. © H
o P
“ o [e] (o] mm ~
— wn oo
———y T —r—r T —Trr——r—
> < o - ) < o . © < o cen -
{wa, c1)*N  IN3W3OVIdSIC w© | (w>, 01)IN  LIN3IW3DVdSIA w (wo, 01)*N  INIWIOVIdSIO w 0 m.
O oH
: 38+
a
O I S ST T T e e - -- - - . Q0 -
= : 3 & 8 3 B & 3 : 3 & 3 SaH
- [0 L a [ &L o e
r . s [ S0 @
' S N-AT o
i S Le] WW ~
- [ O~
[ ‘*I — L A—| .\ﬂ.ul m |“ 5 N O WX
E -0 % F § 25 3 235 2%
E 1y =3 [ 1 g 2 L o TR
4 [ - @ s T . " HUY 3
u b ...4 i [ A 1 A [V R ol oA}
o = R S S L > 0
: | {418 58
[ N s ] ! ] W dcoe
- | -0 = - -0 = - -4 rwZ B B Mo
= = u -

M ]
."A w! e
[ ¢ Ly o
9 “ 8 e, F n“-
4 A4 o
a o (o]
A -

T &. 1 r v o &.4!4 <L<<JM "

4 0 .
(W3, o) N INIWIOVIESID @t (wo,0) ‘N INIW3OVdsia © (wa,.01) ‘N LNIWIDVIdSIa O

8
4-




g
€2, |
U N.P. .
) . r Uz N.P. r;
L R AL SR LA R SN BURL AL B B . vrTrrvf[,:nﬁ'ﬁ71r—v—[vv..,.wfﬁ] “
T . E |- |
o -1 ——— 2 T _—/\/\/\/l
% | AT
E S — . M/
S .9 — = .5 s
:5 . ——__/\/\/\/\_/ ,
_________/'\_h/vl - ——____/_—_—_/\/\/\/\/\/\/\’3 i
et . Z | . !
E e T ———— ), i i
Sl —————=———! § : |
8 ‘________,./-\-"\/_/\: g ' !
9 i
5 -2 ; |
2 I - B R ‘
a. O 5 10 15 ar O 5 10 I5 ¢
1 TIME (mili- second) 1 TIME (milli -second) |
i
i r;—rrluyzu'lrlulrr--,ﬁrx|ﬁrlrr] g r'r“l—r""-l"l"'!—l"l-f—l"‘.rvrx.l.‘.ﬁ'rrlrr.] i l
E|_ 1 O |- . : :
s“ o — ! ‘e N \ i
[=3 3 — . 4
S [T Py : I
. -—_—_/\_/\A‘ ; “/ t 5‘3
- . o i e
= ————_——/\’\/-——/-\1 ul “ '
S
s 0- TN, ?’,o— ‘;‘ K
A A |
< g -
= . &
::-;’ a

. ——— e o et g e 4 —oh o

Trrrryvryvpliryrirrrrrrrrrrr ot ’lf""T"llyur-r‘vr| vvvvvvv rl
a, o 5 io 5 a! O 5 10 5 .
TIME (milli- second) u 2 _ TIME (milli- second) ! -
. *ﬁﬁ[r',,',,ﬁr[,rr,ltl,,1 Iﬁv|1r1xrrﬁﬁf1 T x'|vl ‘
-G I— ——’\_/\ ‘ ' ‘E’ I —1 : ='
( g W\ : [ Tg ! ! |
- M . — :
S5 ‘/\_/\ : : 5,5—4 .
— ‘/\.———\ . s 1
s " % - b
30 _/\_/'\ y =0- T '
-4 10
[ w
< /\/ .9 . .
i o ‘ 5 , ,
—r |frvrl-vr"-rv'lﬁ—"'—l o ﬁﬁvl|rrtl[lft1—r'r-1_g||rr£ :
a; o 5 10 5 20 25 aj o 5 0 15 20
TIME (milli -second) TIME (milli- second)
Figure 21. Synthetic seismograms of both the radial
and vertical displacements u. and U_ of the transient
response of Model I, II, and III aléng LINE L as show

in Figure 7.




r__w______w

i REFERENCES

Baylor, J.L., Bieniek, J.L., and Wright, J.P., 1974,
A 3-D Finite Element Code for Transient Nonlinear
Analysis, Interim Report of Weidlinger Associates,
Consulting Engineers, N.Y., N.Y.

Fung, Y.C., 1965, Foundations of Solid Mechanics,
Prentice-Hall, Inc., Englewood Cliff, N.J.

Kuo, J.T., Chen, K.H., Teng, Y.C., Gong, C., 1975,
Numerical and Analytical Solutions to Elastodynamic
Problems, Final Report, AFCRL-TR-75-0428.

Krieg, R.D., 1970, Unconditional Stability in Numerical
Time Integration Methods, Sandia Laboratories Report
SL-DR-~70-400.

63.




.

i
:
J

-

IV. THREE DIMENSIONAL EXPERIMENTAL STUDY OF

ACOUSTIC-ELASTIC

WAVE SCATTERING AND DIFFRACTION




Table of Contents

Acoustic-Elastic Experimental Model.....................

Model System.........cciieiiitnensercarosnsecensocnnns

Analysis, Interpretation and Discussioms................
Geometry of Ray Paths(Wavefront Parametric Equations).
Definitiom and Notation of Various Types of Waves...

Direct Waves. ... ....cciiiuieenceaesoeacsoneccasannnes

Transmitted Waves....... teeetseses et teetsacssnssnese

Multiply Internally Reflected and Converted Waves...

Diffracted Waves................ Ceetesteteseenaas ceee

L T B QY - -
Interpretation and Discussions....... Certettsaesracnans
Conclusions................ D teeenes

References.........c...... cecsecsrenacns cesesesenn cenenes

22
23
27
29
38
47
54
56

65




ABSTRACT

Three dimensional model experiments are performed to study the
acoustic~elastic wave scattering and diffraction by a vertical elastic
cylinder immersed in a fluid due to a trainsient acoustic point source.
The direct, transmitted and diffracted waves in the volume exterior to
the cylinder are clearly observed. Farticularly, the diffracted longi-
tudinal, transvers, Rayleigh and acoustic (creeping) waves which propa-
age near the cylindrical interface are observed together with the
waves transmitted through the cylinder. The moveout of the diffracted
waves for non-symmetric source-receiver confiqurations is shown.
Splitting of each diffraction at non-symmetric receciver positions is
verified and explained as a result of diffracted energy propagating in
both directions around the cylinder., Helical diffracted waves propa-
gating up and down the cylinder, as predicted by theory, are verified

for the first tinme.

Three dimensional ray path and wavefront equations are given io1
all of the waves encountered in this experiment. The amplitude spectra
maxima are shown to be related to the relative arrival times between

rhe various events observed on the data trace. Envelope dectection and




homomorphic filtering are applied and shown to provide information
or. the arrival times and ¢n the temporal duration of the observed

transmitted and diffracted cvents.,
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INTRODUCTION

Bodies possessing a cylindrical shape are of considerable impor-
tance in the theory of scattering and diffraction of acoustic and
elastic waves. Many man-made structures, such as, mine shafts and
drifts, fiber reinforced materials, underground and ocean-bottom
pipes, cast metals containing inclusions or imperfections and missile
silos, as well as such natural formations 1like salt domes, mineral
deposits, igneous intrusives, caves, sink holes, seamounts and coal
gasification cavities may be approximated geometrically by a cylindri-
cal shape. Since the apalytical solution to the three dimensional
scattering and diffraction of an elastic cylinder embedded in either
an elastic or an acoustic medium due to a transient point source of
energy is intractable, the alternative method of an experimental model
study provides a means of obtaining a physical understanding of the
problem. Moreover, an experimental study may provide a means to ver-
ify that the waves predicted by two dimensional theory do exist in

both two and three dimensions.

The basic physics of scattering and diffration at various discon-
tinuities is dicsussed by Keller(1958, 1962), Keller and Karal(1964)
and Kouyoumjian (1975). Excellent reviews of the scattering'and dif-
fraction of fluid-loaded structures are provided by Uberall and

Hwang(1976), Uberall(1973) and Neubauer(1973). These reviews are lim-

ited to discussing the analytical solutions to simple acoustic and

/
P kit




elastic problems by the method of integral transforms and they discuss

the use of surface waves propagating on plane and curved boundaries.

]
The principal analytic solutions which have been obtained, only begin-
i
é ning to scratch the surface of acoustic and elastic scattering and
i
% ' diffraction by cylindrical and spherical bodies, are for sound pulses

: diffracted by 2 circular cylindrical cavity(Chen and Pao, 1977), for
sound pulses diffracted by a rigid and a soft cylinder embedded in a
solid(Gilbert,1960 and Gilbert and Knopoff, 1959), for three dimen-
sional acoustic wave scattering and diffraction by an open-ended ver- ‘
tical soft cylinder in a half-space(Teng, Kuo and Gong,1975) and for 2

the scattering and diffraction of an infinite cylindrical cavity in an

e

elastic medium due to an impulsive elastic P wave source(Hwang and

hadra .

Kuo, unpublished). These solutioans provide a basis for the under-

B e aaoaths S

2o Wil

standing of the manner in which incident impulsive energy is scattered

and diffracted by cylinders, but they fall short of the total problem
of showing the interaction of the tramsmitted waves through an elastic
cylinder with the diffr;Eted waves around the cylinder. Failure
occurs because the boundary conditions used prohibit energy from being
refracted into the cylinder. Incorporation of transmission into the
.problem leaves a characteristic equation to solve whose roots are
extremely difficult to extract. Except for the solutions by Teng and

Kuo(1975) and Hwang and Kuo(unpublished), the previously mentioned

R

solutions are for two dimensional problems.

D R



Experimental model studies have provided the verification of the
existence of circumferential diffracted creeping waves and-of dif-
fracted Rayleigh waves (Barnard and McKinney, 1961, Faran, 1951, Bun-
ney, Goodman and Marshall, 1969, Harbold and Steinberg, 1969, and Neu-
bauer, 1968). These experiments were specifically designed to study
individual diffractions by using a bistatic source and receiver
configuration with the transducers oriented to the cylindrical surface
at the critical angle at which the diffracted wave to be verified is
excited. Through this orientation the desired diffraction event is
enhanced while all of the other arriving events are less enhanced in
order that they will not interfere and confuse the verification of the
diffraction. Except for the work of Steinberg(1969), all of the
experiments were performed for two dimensional cylinders,i.e. the
source and receiver were kept coplanar. Another drawback of the pre-
vious experiments designed to study diffractions on cylinders is that
long monochromatic tonebursts were used as sources which were long
compared to the characteristic dimension of the cylindricaliscatteret.
Sachse(1974), Sachse and Chian(1974) and Pao and Sachse(1974) used a
short transient pulse to study backscattered and diffracted ultrasonmic
pulses from elastic and fluid cylindrical inclusions in a solid med-
jum. Verification of a circumferential diffracted S wave propagating

at a fluid-solid interface for the case of a fluid inclusion in a

s0lid medium was obtained.

T = AL e




This thesis addresses the acoustic-elastic scattering and diffrac-

tion of an infinite elastic cylinder immersed in a fluid medium due to

’

a simulated transeint point source. |

ACOUSTIC-ELASTIC EXPERIMENTAL MODEL

" 1

: |

Model System i

i :
{ R

The experiments are performed in an acoustic model tank which mea-

sures 24' long by 18' wide by 12' deep (Figure 1). By suspending the

PRI . TSI

source, the receiver and the elastic cylindrical model in the center 3

sq. ft. of the tank, the sides and the bottom are far removed to pre-

s o

vent the recording of unwanted reflectionms. In the present experi-

ment, using a rectaagular coordinate system, the source and the

- ——
Aol ]

receiver can be moved in both directions along a system of rails using
the position of the cylinder as the origin. For the cylindrical sys-
tem, the source transducer is used as the origin and the receiver is

rotated about the source at a radius r. In both systems the vertical

movements are achieved by raising or lowering the transducers attached

| to the rods. Both the source and the receiver can be rotated verti-

e b aMex i Liam R o b Ak mdmimat e s ki o ieall

g cally and horizontally about their fixed positions imn space to simu-
late a point source or a line source. Through the rotation of the L
source in a horizontal plane in degree increments and summing the
recorded data traces for each increment, a line source can be simu-

lated because a narrow beam transducer is used as the ssurce. If, for
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each horizontal increment, the source is rotated vertically in equal

increments and these data are summed, a point source is simulated.

The source and the receiver are suspended at a depth of one foot or
greater below the free surface to eliminate unwanted reflections from
the surface. A cylinder of 4.5 ft. in length is used. The source and
the receiver are kept far enough from each end of the cylinder so that

diffrations from the ends do not interfere with the arrivals of pri-

mary interest.

The source and the receiver used in the experiments are immersion
transducers manufactured by Panametrics, Inc.. These transducers mea-
sure 1.25 in. in length and 0.625 in. in diameter. The element used
is a 0.5 in. diameter PZT (Lead-Zirconium-Titanate) ceramic which is
backed by a specially designed tungsten-doped epoxy resin. Figure 2b
displays a typical source wavelet for this type of transducer in The
pulse mode along with its amplitude and phase spectra as shown in Fig-
ure 2a. The pulse emitted from the transducer used as the source is
short, approximately 2 psec. duration, and the radiation patterns
are about 10 db. down at 10° from the transducer axis creating a nar-
row directed beam of energy (Figure 3). The lack of significant ring-
ing, as seen in the wavelet in Figure 2b, when the transducer is
pulseé by a narrow, 1 psec., high voltage(approximately 80 volt)
pulse is obtained by highly damping the transducer using a tungsten-

doped epoxy resin to back the PZT ceramic disk. This resin is
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s
designed to match the impedance of the PZT ceramic allowing 100% of

the energy to be transmitted at the back of the ceramic. Since the
epoxy has a well determined velocity, by doping the epoxy with tung-
sten dust the density of the resin can be increased enough that the
impedance of the resin matches the impedance of the PZT ceramic. How-
ever, the epoxy has a low Q which completely attenuates the signal
transmitted at the back of the ceramic before it‘ reaches the ceramic
following reflection from the rear casing. These transducers were
chosen specifically because they emitted a short almost symmetric
pulse when used in the pulse mode. This type of pulse is desired

because it allows greater resolution between arrivals.
Data Acquisition System

The experimental data acquisition system is shown in Figure 4. It
uses an HP-214A pulse generator to pulse a Panametrics immersion
transducer with i narrow, 1 psec., high voltage pulse to ﬁrovide a
parrow, 2 psec, source wavelet (Figure 2b). The received signal,
which is scattered and diffracted from the cylinder model, is first
received by a Panametrics immersion transducer, then it is pre-ampli-
fied, then amplified 20 db. by an HP-450A amplifier. It is then fil-
tered by a 100 KHZ. high pass RC Rockland filter before it enters the
Tektronix sampling unit for reduction to an analog signal compatible
with the 8 bit A/D converter. Since the center frequency of the

transducer pulse is in the megahertz range(see Figure 2b), a Tektronix

™
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Figure 4 Data Acéﬁisitiog System
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585 oscilloscope with a 1S1 sampling unit plug-in is used to slow the

signal down to a recordable level. A replica of the input signal to
the sampling unit is output as a lower frequency analog signal which

is digitized.

The analog output signal from the sampling unit is input into an 8
bit analog-to-digital (A/D) converter which has a ;emory of 1024 8-bit
words. Since the desired signal requires more than 1024 samples to
record the entire signal, the A/D conveter has a built-in option which
allows the recording of successive records of 1024 samples by counting
(N-1)21024 samples before beginning to digitize the signal (N = the
number of the data group which is desired). After each data group is
written into the memory of the A)D converter, it is read out onto an
8-bit paper tape which is then read into a PDP 11/50 computer for the
appropriate pre-processing prior to analysis on an IBM 360-91/75 com-
puter. The pre-processing performed on the PDP 11/50 consists of
merging and editing thelappropriate data groups together to form one
data record for each receiver position recorded. If the data were
clipped, this record would be read to paper tape and the amplification
factors would be adjusted to record an unclipped record. Once
recorded both clipped and unclipped records are read into the computer
and corrected using a scaling program to obtain the final unclipped

record of the data trace for that receiver position.

«]ll~




The model used is a 2.0 inch, 4.5 feet long, stainless steel cylin-

der which has a longitudinal wave velocity of 18996 ft/sec and a tran-
sverse wave velocity of 10170 ft/sec. Three dimensional scattered and
diffracted fields of a simulated acoustic point source due to a cylin-
der are studied: (1) the 2D coplanar case; (2) the 3D non-coplanar
case. Receivers are placed in the same horizontal plame as the source
for Case (1) and for Case (2) they are placed in a horizontal plane
different from the source. The non-coplanar case is particularly
designed to study the helical waves. The coplanar case simulates the
scattering and diffraction from an infinite elastic cylinder immersed
in a fluid due to an acoustic line source parallel to the cylinder

axis.

The geometrical configuratiom of the source and the receivers for
both the coplanar and the non-~coplanar cases are shown in Figures 5
and 6. The same azimuthal receiver locations are used throughout the
experiment. Only the horizontal plane of the receivers is altered.
In order to obtain data in the illuminated zone the source and the

receiver locations were changed to 6Ro as shown in Figure 6.

The configurations of the source and the receivers in this study
are divided into four regions. Region I consists of receivers at azi-
muths 0° to 30° on a circular arc of 3.5R° about the cylinder for a

source located 3.5Ro from the cylinder axis. These receivers are

-12-




Figure 5: Source and receiver configuration for {
regions I, II, III.

GSB = Geometrical Shadow Boundary
SRB = S Reflection Boundary

PRB = P Reflection Boundary

SdB = Diffracted S Wave Boundary

P48 = Diffracted P Wave Boundary
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all located in the geometrical shadow zone beyond the geometrical sha-

dow boundary(GSB). Regions II, III and IV are all within the illumi-
nated zone. Region II has the source located at 3.5Ro with the
receivers also at 3.5R0 at azimuths 35° to 55°. This region is bey-
ond the S Reflection Boundary(SRB) where reflected waves are not dec-
tected but diffracted waves are detected. Region III has the source
located at 3.5Ro while the receivers are on a 4.SR0 circular arc
at azimuths 75° to 105°., This region is within the § and P Reflection
Boundaries(SRB and PRB) where critically reflected and diffracted
waves propagate. For Region IV, as shown in Figure 6, the source is
located at 6Ro and the receivers are placed at azimuths 120° to 160°
6Ro from the cylinder. This region is within the boundaries for P
and S wave diffractions where only reflected and transmitted waves
propagate. Figures 7 display the interpreted data for the Region I,
the shadow zone(SZ). Figures 8,9 and 10 display the interpreted data
for Regions II, III and IV located in the various paris of the illumi-
nated zone(IZ).

ANALYSIS, INTERPRETATION AND DISCUSSION
Geometry of Raypaths(Wavefront Parametric Equations)

Definition and notation of various types of waves

The following symbols are used to define the various types of
waves in this thesis. K is used to denote the acoustic waves propa-
gating in the acoustic medium outside the elastic cylinder. P and S

are used to denote the longitudinal and transverse waves propagating

S
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inside the elastic cylinder. Pd and Sd denote the diffracted
longitudinal and transverse waves which propagate at the cylinder

interface. Kd and R, denote the diffracted acoustic wave and

d

the diffracted Rayleigh wave ,respectively.

and K

Combinations of the symbols K, P, S, Pd’ sd! Rd d

are used to describe the ray paths of the waves interpreted in this

study. The direct acoustic wave which has no interaction with the

cylinder model is denoted by K. KKr denotes an incident acoustic

wave, K, reflected from the cylinder. KPK denotes an incident

acoustic wave, K, refracted into the elastic cylinder as a longitu-
dinal wave, P, and refracted into the acoustic medium as an acoustic
wave, K. Analogous to KPK is KSK , the difference being the wave
travels as a transverse wave, S, inside the elastic cylinder. Waves
which are multiply reflected a P waves inside the elastic cylinder
are denoted by KnPK, where n equal the number of P wave ray paths.
Similarly, KmSK denote multiply internally reflected S w;ves with m
being the number of S wave ray paths. points inside the elastic
cylinder. Diffracted waves are denoted as follows: KPdK is the
diffracted P w;ve; KSdK is the diffracted S wave; KRdK is the
diffracted Rayleigh wave; KKdK is the diffracted acoustic wave.
Full circumnavigations of the cylinder by the various diffracted
waves are denoted by KPdIK and similarly for the other diffrac-
teins. For non-symmetric source-receiver configurations , as shown

in Figures 5 and 6 the diffractions propagate in both directions.

=21~




The front diffraction( the shortest path) is denoted by KPdKf

and the back diffraction(the longest path) is denoted by KPdKl.
the same symbolism is used for all of the front and back diffracted

waves. d

~.

Direct Waves

The direct waves, K,are only observed in the illuminated zone,

i.e., at receivers in Regions II, III and 1IV. In Region II, K 1

arrives at approximately 112 psec at 35° coupled with KRde

(see Figure 8). At 40°, K arrives coupled with K3PK and again at

55° coupled with KPSK at approximately 105.5 psec. At 45°, K is

not visible. There is a data void from 107 to 108.25 psec. Des-

P s T

tructive interference as well as low source strength account for the
loss of data where K should appear. Unlike Region II, K arrives
among the first arrivals in Region III(see Figure 8). It is coupled
with KPK, K2PK and KPdKf arriving at approximately 109.25 psec

at 75° for the coplanar case. Region IV is devoid of K arrivals due iﬂ
to the source radiation pattern and the geometrical configuration

used.

-22-
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Reflected Waves

Region II receives no reflected events, er’ because this
region is beyond the critical reflection boundaries for P and §
waves. Critically reflected P and S waves are excited beyond the P
and S diffracted wave boundaries. The most prominent KKr arrivals
appear at receivers in Region IV. They are the first arrivals and
their amplitude is much greater than the diffracted and refracted
wave arrivals. In order to show all of the arrivals, the KKr

events are displayed clipped.

The wavefronts for the reflected waves, KK:’ can be described
parametrically. According to Huygens’ Principle the surface of the
cylinder will have and an infinite number of secondary sources when
the incident energy from the source irradiates it. Let
Q(€,n,f) be the coordinate point of the secondary source on
the surface of the cylinder. Let P(x,v,z) represent a point on the
advancing wavefront of the reflected wave from the secondary sources
on the cylinder's surface. The length of the incident ray from the

source,'S(0,0,0), to the cylinder is given parametrically as

R = (Yo% - 2a¥,cos6 + azsecz¢)¥ (1)

— TN . » T T o e e R

T~
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vwhere Yo is the y coordinate of the offset cylindrical axis and a
is the radius of the cylinder. The parameters used to describe the
waveiront are O and ¢(see Figure 11). Parametrically, the point

Q(¢,n,{)on the surface of the cylinder is given as

¢ = asind (2a)
n= Yo- acos@ (2b) ~
{ = atan¢ . (2¢)

From the surface of the cylinder, the general equation for the

expanding wavefront in three dimensions from Q(§,n,{) is
2 2 2 2
(x-8 +(y-n +(z-¢ =R (3)

where R is the radius of the expanding wavefront at any point
P(x,y,2z). In order to describe the surface of the wavefront due to
all of the secondary sources at a given point Po(xo,yo,zo),
equation (3) is differentiated with respect to 8 and ¢ and then
these equations are solved along with equation (3) for the coordi-
nates x, y, and 2. This solution provides the coordinates of the
point Po(xo,y),zo) on the wavefront of the reflected

waves,KKr. Differentiating equation(3) we obtain

24~
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a(xy - £)cos® + a(y, - n)sin = -R3R/36 (4a)

a(z, - {)sec?¢ = -R3R/3¢ . (4b)
The radius of the expanding wavefront for er is

= 24 -
R, = ct Ri (5)

where t is the time variable, c 1is the acoustic velocity of the fluid
surrounding the cylinder and Ri is the length of the ray, or the

wavefront radius, from the source to the cylinder as given in equation
(1). By substituting equations (1), (2) and (5) into equatioms (3)
and (4) and solving for x, y and z, we obtain the following solution

for a point Po(xo,yo,zo) on the wavefront of KKr:
- "1 . + e - -2
X, = £+ RI(Ri Yosxnﬁcosﬁ + sin6(1 Ri

Yozsinze - azRi'ztan2¢)§) (6a)

= “ly cin29 3 -R-2
Yo = N T Rl(Ri Y,sin 0 ¥ cos(l R

Yozsinzb - azki‘ztanz¢)¥) (6b)

7




z,=§ + aRIRi-ltan¢ | (6c)

Equations (6) describe the three dimensional wavefront of the waves J
reflected from the cylinder. If 6 = 0 equations (6) reduce to the

two dimensional wavefront and ray path equations as follow:

"V <
. E
-1 3
= - * - - - z
X, £+ RI(Ri Y,sinbcosB * sin6(1 RS
' y
Yozsinze) (7a)
= -1 i 029 T - R=2y 2cin28)%
Yo =N + Rl(Ri Yosxn 0 F cos8(1 Ri Yo sin29) *) (7b)
' z, =0 (7¢)
;
R ; (Y 2 + a2 - 2aY cosﬁ)¥ (7d) “
b 0 0 : 4

Refracted Waves

Refracted waves are not recorded in this study because the L
receivers are restricted to recording in the fluid exterior to the
cylinder. The parametric wavefront equations are given for com- |

pleteness. The radius of the refracted waves expanding wavefront is

given as follows




i

o T——— Y i, 2

’
R2 = yp(ct - Ri) Yp = v/ec. (8)
’
where v is the velocity of the refracted wave. For the refracted P
wave, KP, v = a and for the refracted S wave, KS , v= B. The
: length of the incident ray, Ri’ is given by equation (1) and the

point Q(£,n,{) on the cylinder's surface is gqiven by equations

(2). Substituting equations (1), (2) and (8) into equations (3) and
(4) we obtain the parametric equations for the wavefront of the
refracted wave (P or S) at Po as follows:

- -1 . + . - 2
Xy = £+ Rz(Ri Y,sinbcos® * sinB(1 Yp

—2v 2cin28 - v 222R~ 2tan2e) ¥
Ri Yo sin?6 Yp a Ri tan?¢)*) (9a)

= <1y cin2 - y 2R 2y 2
Yo =0+ RZ(Ri YOSID 8 ¥ cosb(1 Yﬁ Ri ¥,

sin20 - szazR{'ztanz¢)¥) (9b)

1

z, = { + ypaRzRi- tang . (Sc)

For equations (9) to apply, © and ¢ are subject to the condition

that:

0 < einc < sin-l(v/c) (10)

o




where v is equal to o for KP and B for KS.
Transmitted Waves

: The transmitted waves are due to the numerous combinations of waves
refracted inside the cylinder before they are transmitted(refracted)
into the fluid medium outside the cylinder in which the recording is %
being done. The secondary source points Q(£,n,{) on the surface

of the cylinder are redefined as follows (see Figure 12):

g = asin(6 + ai) (11a)
n= Yo - acos(9 + ei) ) (11v)
{ = atan¢ + b, ' (11c) ’3
I’
b, = 2asin(8,/2)tan/Y sind (11d) !
!
|
6, = T - 2(sin.1(inosin6/(Yo2 + a2 - 2aYocosﬂ)§) (11e) &
i
i
-29- i
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where i = 1 for P waves and 2 for S waves and

Y, = a/c; Yy = B/c; eti = sin_l(yisineinc) (11£)

For a given ray path defined by an initial 6 and ¢, the three

dimensional ray paths interior to the elastic cylinder trace out a
helix on the surface of the cylinder. Figure 12 defines the parame-

ters to be used to obtain equation (11d). Figures 13, 14 and 15

show thw plan views of the three triangles used to obtain the fol-

lowing relationships leading to equation (11d).

§q = R, = (Yo2 - 2a¥ cos8 + azsesz¢)¥ (12)
SC = Di = (Yo2 + aztan2¢)5 (13)
66 = a8 = cylinder radius (14)
¥, = Bsca. (15)
|
-30-
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Figure 15 Right triangle giving helix slope
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Using equations (13), (14) and (15) we can rewrite equation (12) and

solve for C°s¢1=

2 = p2 2
R i D i + a ZaDicosw1

cosp, = -Yocosﬁ(Yzo + aztanZQ)-a

el
[}
&

2 ; cos¢1‘= a/T2

-
H

a(Y20 + aztan2¢)¥/Yosin6

T, =HQ = (T2, - a2)*

-
1]

a(Yzosinze + aztagz¢)s/Yocos9

atanb

-
"

tany, = (T2, - T2)¥1,

(16)

17)

(18)

(19)

(20)

(21)

(22)

(23)




* .

tany, = atan¢/Y,sinb . (24)
b, = QBtany, (25)
QB = 2asin(6,/2) . (26)

Using equations (24), (25) and (26) we obtain equation (11d) for the
pitch of the helix: For the first transmitted P wave, KPK, the

expanding secondary source radius is:

R, =ct - R, - 2(c/a)azsin(61)(l+ aztanz¢/Yozsin26)§ (27)

Similarly, the expanding radius for the first transmitted S wave, KSK, is:

R = ct - R, - 2(c/P)a%sin(6,)(1+ a?tan?¢/Y,2sin?0)?  (28)

Substituting equations (27) and (28) into equations (3) and (4), we

obtain the parametric wavefront and ray path equations for KPK and

KSK as follow:




dm.

Eare e hadl oL lh sl S

/
X9 = & = ((2) +2,)/(1 + Y,))cos(8 + 6,) ¢ sin(8 +, 6,

(R = ((2) + 2,0/(1 + ¥))? - (z5 - D)D)* (292)

Yo =N - ((Z1 + 22)/(1 + Yi))sin(e + Bi) F cos(@ + Gi)

(R - ((2) +2,)/(1 + Y))2 = (2 - D)D) (29b)

z, = g - Rjatan¢(Ri-1(Zac/ci)sin(ai/Z)(1 + aztan"’q)//Yoz

sinze)fa)/(Yosine + 2asin(ei/2)) (29¢)

Z1 = Rj((-ac/cj)(l + aztan%/Yoz)%Yicos(Gi/Z) + (Za3c/cJ.
Yoz)sin(ﬂilz)tan%(l + aztan2¢/Yozsinzﬁ)-licsczecote

-1 .
+ YORi sinf) (294d)

zZ, = (zo - C)(aYitanocos(ei/Z)/YosinO - (a/Yo)t.an¢

cscﬂcotesin(eilz)) (29e)

Y, TR T ¥ ey . >




e m T e

Xk

= 2¢in28 - 2 2 _
Yi (yiaYo sin%@ inocosG(Yo + a ZaYocose))

/((Yoz + a2 - 2aYocose)(Yoz + a? - 2aY°cos6 - yizYoz

sine)a) . (29€)
For the KPK wavefronts and ray paths use equations (28) and(29) with i

=1and j = 4. Similarly for KSK use i = 2 and j = 5 in equations

(28) and (29).
Multiply internally reflected and converted transmitted waves
To obtain these wavefront and ray path parametric equations, we

again must redefine the secondary source points Q(§,n,f) which

are on the surface of the cylinder as:

¢ = asin(6 + 161 + m62) (30a)
s
»
n=7Y,- acos(6 + 16, + mez) (30b)
{ = atan¢ + 191 + mﬁz (30¢)




) .
/
1 and m take on integer values which state the number of complete
internal P and S wave ray paths that have been completed. The expand-
0
ing radius of the secondary wavelet for these type of transmitted
waves is given by:
¢ 2 ; % .
R = ¢t - R, - 2a(1+ a%tan2?¢/Y.25in20)*((1c/a)sin(6,/2)
l,m i 0 . 1
+ (mc/ﬂ)sin(62/2)) . (31)
¢
i Substitution of equations (30) and (31) into equations (3) and (4)
' yields the parametric wavefront and ray path equations for the K1PmSK
transmitted waves: ?
&

xo =& = ((Q +Q,)/(1 + 1Y, + u¥,))cos(8 + 16, + mb,) ¥
t sin(® + 16, + w6, )(R) 2 - (z - {)? - ((Q; + Q)/(1 + 1Y,

+ myz)))* (32a)

Yo = 0 - ((Q +Q)/(1 + 1Y, + u¥)))sin(6 + 16, + =8,)

T cos(® + 19l + mez)(R1 m? - (zo - 82 - ((Ql + Qz)/(l +

L
1Y, + a¥,))) (32b)




Yl and Y

z, = ¢+ Rl m(aRi-lYotan¢sin6 - Zaztan¢((1c/u)sin(61/
2))(1 + aztan2¢/Y02sinze)5)/Yosine(yosine + 2a(sin(0,/2) +

sin(62/2))) (32¢)

Ql = (z0 - §)((aztan2¢/Yosin6)(chos(BI/Z) + Yzcos(62/2))

- (Zaztan¢/Yo)(sin(91/2) + sin(92/2))) (324)

Q, = R, m(YORi-lsine + ((1c/a)sin(8,/2) + (mc/B)sin(6,/2))
(1+ aztanz¢/Yozsin26)-%(2a3/Y02)tanz¢csc26cot6 +
( + aztan2¢/Yozsin26)((lc/a)chos(BI/Z) + (mc/B)Y2

cosOZ/Z))) . (32e)

are given by equation (29e). Equations (32) will pro-

vide the wavefronts and ray paths for all of the transmitted waves.

Ifl=1andm=00rl1=0andm=1 are applied to equations (32) we

obtain equations (17) for KPK and KSK, respectively. If we let ¢ =

0 in equations (29) we obtain the two dimensional equations as fol-

lows:

x =y




H

/

§ - ((Z1 + Zz)/(l + Yi))cos(e + ei) + sin(0 + ei)

(52 - ((Z) + 2,)/(1 + ¥))? - (= - D))}

n- ((Z1 + 22)/(1 + Yi))sin(e + Oi)]F'cos(B + Oi)

(552 = ((zy +2,)/Q1 + Y2 - (2 - DD)*

rj(Yori-lsinG - (ac/ci)Yicos(Qi/Z))

see equation (29f)

ct - r, - (c/ci)Zasin(GiIZ)

2 2 . Y
(Yo + a 2aY°cose) .

41~

(33a)

(33b)

(33¢)

(33d)

(33e)

(33f)

(33g)

(33h)

TN - TR P




The following Figures 16 and 17 display the wavefronts, ray paths
and caustics generated by the various transmitted waves according to
the two dimensional equations obtained from equations (32) by allow-
ing ¢ to become 0. These waves are identified in the data in Fig-

ures 7 through 10. All transmitted converted waves, which have the
same number of P and S ray segments interior to the cylinder, arrive
simultaneously atl the receivers ,.e.g., KPSK and KSPK and K2PSK,
KPSPK and KS2PK arrive superimposed as single wavelets. Figure 18
shows the ray combination for the simultaneous arrival of KPSK and
KSPK. The interpreted data are labeled KI1PmSK since these waves
arrive simultaneously. The form of the transmitted mode converted
waves, K1PmSK, varies greatly between receivers as shown in Figures
7 through 10. However, the KI1PK and KmSK homogeneous transmitted

waves retain their waveform between receivers. The variance of the

waveform character for the K1PmSK events and the retainment of the
waveform character for the K1PK and KmSK events is noticeable by an
inspection of the data received in Regions I and II as displayed in
Figures 7 and 8. Transmitted waves are received in all four
regions. Their interference with the diffracted waves is most not-

iceable in Regions I and II. It is within these two regions that

the diffractions retain enough energy so that they are not masked by

the transmitted waves as they are in Regions III and IV. L
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Figure 16a.) Transmitted wavefronts
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Diffracted Waves

The path of a diffracted wave on the cylindrical acoustic-ealstic
interface is a helix, as shown in Figure 19, beginning at the point
of excitation. The slope of the belix is defined by the tangent to
the cylinder at this excitation point. The slope is given parame-

trically as:

by = aztanOIYosineck (34)

where eck = sin-l(c/ck), k =1,2,3. For k =1 use a, for
k = 2 use p and for k = 3 use v.- For the KKdK wave the helix

slope is:

bdk = aztan¢/Ric. (35)

The length of the incident acoustic ray path for all of the dif-

fracted waves is:

= (Y.2 - i 250c24) 2
R, = (Yo 2a¥sinf  + a®sec ¢) (24)

vhere 6c and ¢c satisfy the following equations for the dif-

fracted waves:




[

At

Diffracted wave
helical ray path

z
N\

SIN L)

\

Figure (9: Diffracted wave helical ray path on the
cylinder.
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For KPdK:

m - cos.l((Yo2 - aYocosec + azsec2¢c)/aRic)) =

sin-l(c/a)

For KSdK:
- -1 2 - 2cpn2 =
7T cos ((Y0 aYocosec + a?sec ¢c)/aRic))

sin-l(clﬁ)

For KRdK:
- -1 2 . 2cpe? =
77 cos ((Yo aYocosec + a?sec QC)/aRic))

sin-l(c/vr)

For KKdK:

cos-l((‘!oz - aY,cosf  + azseczoc)/akic)) =T /2

(36)

(37)

(38)

(39)

B Ky T e e




The parametric equations describing the positions of the secon-

dary source points Q(£¢,n,{) on the cylindrical acoustic-elas-

)
tic interface are given by:
§ = asin® (40a)
n= Yo - acos® (40b)
{.
{ = atan¢ + bdk(e - ec). (40¢)
The expanding radii from the secondary source points for each dif-
# fracted wave-type are given by:
R(KPdK) =ct-R, - sc(@ - ec)/a (41a)
R(KSdK) = ct - Ric - sc(6 - Gc)/B (41b)
R(KRdK) = ct - Ric - sc(6 - Ec)/vr (41c)
. R(KKdK) =ct - Ric - sc(0 - Oc) (41d)

T AT 1 M o . RTLRI I - LR T
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(§

y,
where s equals the arc length of the helix for 1° rotation.

s = (a2 + pz)!’ (41e)

Substituting equations (40) and (41) into equations (3) and (4) we
obtain the Substitution of equation (26) for p in equation (4le)

yields the arc length for a 1° rotation. -
= 20in2 24024 VX ;
g = a(Yo sin ec + (0.1746)2tan ¢c) /Yosmec (41%)
Substituting equations (40) and (41) into equations (3) and (4) we

obtain the following wavefront and ray path parametric equationms for

the diffracted waves:

For KPdK :

Xy = § + AjcosB t sinB(R¥(KPK) - (z,- )2 - Alz)¥ (42a)

Yo =N+ Asiné ¥ cose(Rz(Kde) - (z,- )2 - Alz)k (42b)
-S1-

¢ AR B e ey

T o

e 2




-1 .
z, = § + R(KP K)(aaR, “Y tan¢sing + 8 - °c)/"(Y\o

sind_ + 0 - 8) (42¢)
Ay = (c/ORWRK) = (2, {Itan¢/Y sind_ (424)

Similarly to obtain the equations necessary to calculate the
wavefronts and ray paths for KSdK, KRdK and KKdK we need only
to substitute equations (41), along with the correct velocity in

place of a, into equations (42).

To obtain the two dimensional equations for the diffracted waves

we set ¢ = 0 in equations (33-42). Doing so we obtain:

¢ = asin® (43a)

n = Yo « acos® (43b)

C =0 (43c¢)

Tie = (Yoz + a2 -ZaYocosec)s (434d)
-52-
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i y
’ Xy = & + (rc/a)cos® * rsind(1 - c?/a?)* (44a)
't
Yo = N *+ (rc/a)sing F rcos8(1 - c?/a?)" (44b)
{ :
: 'i
2= 0 (44c) ‘.
€ j
1
r= r(KPdK) =ct -z, - (ac/a) (6 - ec) (444) ‘é
{ L3
By substituting the appropriate velocity in place of @ in equa- Ei
tions (33) they can be transformed into the equations describing the 3%
0 wavefronts and ray paths for the remaining diffracted waves. The ';
diffracted wavefronts for all four diffracted waves are shown in
Figure 20 as computed from the above equatiomns at t = 70 psec.. ‘

Analysis

The events labeled in the data, Figures 7, 8, 9 and 10, were picked ;;
by calculﬁting the arrival times of the different wavefronts at the
receivers using the simple ray theory discussed in equations 1 through L
44 of the previous section. Since the velocities of the acoustic and

elastic media were known, this information was also used in the

interpretation of the arrivals of the diffracted waves. By placing
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Figure 20: 2D diffracted wavefronts at t = 70 usecs.
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the receivers on concentric arcs about the cylinder, the identifica-
tion of the diffracted waves is simplified because, for a given type
of diffracted wave received at two receivers on the same arc, the only
part of the ray path that changes is the path on the cylinder. Only
this segment of the entire ray path changes because the diffracted
wave is always radiated from the cylinder at the same angle. There-
fore, the time interval between the arrival of the diffracted wave at
two receivers, 81 and 62, on the same arc can be calculated in

the following manner:
AT = s(el - 62)/V (45)

where s is the helical arc on the cylinder and V is the velocity of
the diffracted wave on the cylinder. If the arrival times of the dif-
fracted events are plotted as a function of 6, then they will lie on

straight lines whose slopes will be proportional to the velocity of
the diffracted wave. This phenomenon is most easily seen ih Regions I
and II as shown in’ Figures 7 and 8 for both 2D(coplanar) and
3D(non-coplanar) data. For non-symmetric receiver positions these
diffracted events split into front and back diffractions propagating
in both airections around the cylinder. The time interval between

arrival at the same receiver is given by

Lyt = 25/v, (46)

i
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where s is the arc length of the helical path on the cylinder and
v is the velocity of the diffraction. Again this phenomenon is best
seen in the dats collected in Regions I and II (see Figures 7 d

and 8).
Interpretation and Discussion j

The following events are identified in this Region I:

1.) KPK, the transmitted P wave 2
!

2.) KPde, the back diffracted P wave i

3.) KSK, the transmitted S wave

£, ,
4.) KS_ K b, the front and back diffracted S waves

d
£
5.) KRdK 'b, the front and back diffracted Rayleigh waves

6.) K3PK, the twice internally reflected P wave

£
7.) KKdK 'b, the front and back diffracted acoustic waves

|
|
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8.) KPdKIf’b, the first circumnavigated front and back

diffracted P waves
9.) K5PK, the four time internally reflected P wave
10.) KPPSK, KPSPK, KSPPK, labeled K2PSK

11.) KPSSK, KSPSK, KSSPK, labeled KPSSK

The data for Region I, the shadow zone, are displayed in Figure 7
For this discussion the coplanar case will referred to as 2D and the
non-coplanar case as 3D. Both the 2D and the 3D data exhibit the same
phenomena. The KPK event is the first arrival followed closely by the
KPdK event. At the symmetrical receiver position 0° azimuth, the
KPK event is clearly identifiable. Since the receivers are placed on
a concentric arc about the cylinder the moveout of the diffracted wave
is constant(see equation (45)) and the arrivals should appear to lie
on a straight line when the arrival time is plotted as a function of
azimuth. This is easily observed in both the 2D and the 3D data (see
Figure 7). The KPde(back diffracted P wave)event travels a lon-
ger path to arrive at receivers 5° to 30° and , therefore, arrives
later as the receiver azimuth increases. The KPdKf(front dif-
fracted P wave) event travels an increasingly shorter path to these
same receivers. However, due to the magnitude of the KPK event the

KP Ki event can not be detected. Due to this splitting, the

d
KPdKf’b events destructively interfere at azimuth 5° for both

cases and at 10° for the 2D case. The next strong arrival is the KSK
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event. This event is very prominent but as the receiver nears the
shadow zone boundary, the KSK and the KPde events begin to inter-

fere. At 25° the KSK event is lost but the diffracted event is iden-

tifiable. At 30° both events are identifiable. The front and back

traveling diffractions are most observable by tracking KS Kf’b

d
KRdKf’b. These events form a V as the receiver azimuth increases.

and

Interference between the KSK and the KSdKf events begins to occur

when the source configuration is no longer symmetric. It becomes

increasingly difficult to detect the correct arrival time of KS Kf

d
and at 25° this interference destroys both events creating a data
void. K3PK is easily detectable, but as the shadow zone boundary is
approached, interference with KRdK(the back diffracted Rayleigh
wave) increases. This interference is so great that it appears that
only one event arrives. As the shadow-ﬁoundary(30° azimuth) is
crossed , the KRdKf and K3PK, as well as, the m)dxb and KSK
events cross and become separately identifiable again. The multiply
internally reflected mode converted transmitted waves K2PSK are evi-
dent in the time interval between K3PK and KKdK. Again, the dif-
fracted acoustic wave, KKdKf, crosses K2PSK at azimuth 20° and it
also crosses K3PK and KRde at 30° azimuth( the shadow zone boun-
dary). Beyond 30° azimuth, KK dxf is not detectable until it cir-

cum-navigates the cylinder. Diffractions which circum-navigate the

cylinder are detectable as evidenced by the arrival of KP x! fol-

d

lowing the KKdK event at 0° azimuth. The later arrivals consist of

KP2SK and KSPK. Other K1PmSK, K1PK and KmSK, as well as other circum-
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navigating diffractions, are extremely difficult to interpret with any

confidence so they are not.
The following events are identified in this Region II:

1.) KPK, the transmitted P wave

2.) KPde, the back diffracted P wave

3.) KSK, the transmitted S wave

4.) KSdKf’b, the froﬁt and back diffracted S waves

5.) KRdKf’b, the front and back diffracted Rayleigh waves
6.) K3PK, the twice internally reflected P wave

7.) KKdKf’b, the front and back diffracted acoustic waves

8.) KPdKlf’b

, the first circumnavigated front and back
diffracted P waves -

9.) K5PK, the four time internally reflected P wave

10.) KPPSK, KPSPK, KSPPK, labeled K2PSK

11.) KPSSK, KSPSK, KSSPK, labeled KPSSK

In Region II the first phenomenon noticed is the amplitude decay of
KPK and KSK. This is not as noticeable in Region I. Each of the
other events which are identified for the shadow zone are also
observed and ideantified in this region. Besides these events, Region
II adds KPSK, KSPK and K to this list. The first arrival in Region II

is the KPK event. Although these reveivers are in the illuminated
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zone, diffracted P, S and Rayleigh waves are still received. The

KPdKf event is not evident since it arrives in the time window of
KPK. The KPde arrival at 35° is superimposed on KSK and remains
unseparated from it until azimuth 50°. For receivers between at azi-
muths 35° and 50°, four different events are superimposed within the
time window 98.25 to 103.25 psecs., making identification of the

separate events difficult. These events are KP Kb, KSK, KS Kf

d d

and KRdKf. The KSdKf event is not visible as a separate event
at 35° azimuth but KRdKf has an identifiable arrival time but no
termination point. Arriving on the tail of K'RdKf is the mode con-
verted events KPSK. These mode converted arrivals a:» unidentified in
the shadow zone. Another event which is non-existent in the shadow
zone , but does exist in the near shadow zone and in the remainder of
the illuminated zone, is the direct acoustic wave, K. K arrives at
receiver 35° at 112 psecs. coupled with KRde. At 40°, the K
event arrives coupled with KSde and K3PK. Since the radiation
pattern of the source transducer is narrow(Figure 3), the' K event is
low in amplitude and shows no evidence of its existence at 45° 2ud
50°. At 55°, the K event arrives coupled with the mode converted
events KPSK. Throughout the near shadow region the diffracted events

b

KSdK and.KRde are identified. Mode converted events K2PSK

and KP2SK are detected and identified in this region. The xrdxl

arrival in this region displays a moveout to earlier times as the

£

receiver azimuth increases. It should be noted that back diffracted

acoustic waves are present in the illuminated zone, as well as, the

£,b £,b

diffracted waves KPdK ’ KSdKf’bK and KRdK
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The following events are identified in Region III:

’
1.) K, the direct acoustic wave
2.) KPK, the transmitted P wave
’ 3.) Kdef’b, the front and back diffracted P waves
4.) K2PK, the first internally reflected P wave
S.) KSK, the transmitted S wave
* 6.) KSdKf’b, the front and back diffracted S waves
7.) KRdKf’b, the front and back diffracted Rayleigh waves
8.) KK:’ the reflected acoustic wave
R 9.) K3PK, the second internally reflected P wave

10.) KPSK, KSPK, labeled KPSK

12.) K2SK, the first internally reflected S wave

13.) K?dKlf, the first circumnavigated diffracted P wave

14.) KPSSK, KSPSK, KSSPK, labeled KPSSK

16.) K3SK, the second internally reflected S wave

17.) KPSSK, KSPSK, KSSPK, labeled KPSSK
18.) KPSSK, the mode converted P to SS wave

19.) KPSSSK, KSPSSK, XSSPSK, KSSSP, labeled KP3SK

In this region certain events are received and identified which are
not present in the shadow or the near shadow regions. Since receiver
90° and 105° are within the reflection ' region, reflected acoustic
waves, er’ are received and since receiver 75° is outside of this

region no KK event exists(see Figure 3). Transmitted waves with an
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even number of P ray paths and S ray paths without any mode
conversions are observed at these receivers. K2PK and K2SK are uni-
dentified at receivers in the shadow and near shadow zones but they
are observed for receivers at 75°, 90° and 105° azimuth. A splitting
effect for K2PK and K2SK is evident in cthis region caused by internal
reflections traveling in both directions around the cylinder. On exa-
mination of the transmitted ray diagrams in Figures 16 and 17, this
effect is seen if it is remembered that these diagrams plot only one
half of the ray path and wavefront. Dual arrivals of K2PK, K2SK and
K3PK are identified in Figure 9. Most of the observed events in this
region are combinations of events. The first arrival is a combination
of K, KPK, Kdef and K2PK at receiver 75°. At 90°, the K event
arrives much earlier than the combination KPK, KPdKf and K2PK with
such a2 low amplitude that it is unrecorded. At all three receivers,
KSK, KSdKf and KRdKf arrive as overlapping wavelets. From

trace to trace the form of the signal changes because each of these
events has a different moveout such that they cross each other. At

f

105°, both diffracted events, KS K. and KR K., arrive before

d d
KSK due to their larger moveouts as the receiver azimuth increases.
Between 116 and 120.5 psecs., the K2PK, the K3PK and the KPde
events arrive very close together. At receiver azimuth 90°, the
KPde event is undetected but is reappears at 105°. K3PK arrives

at receiver 90° on the tail of the reflected acoustic, KK:' K2PX is

present on all three traces. Within the time window 123 to 128.5

pHsecs. at receiver 75°, the KPSK events arrive simultaneously fol-

B - tama 3




lowed by a second K3PK event due to the splitting of transmitted

waves, previously mentioned. At 90°, KPSK and K3PK arrive closer
together and at 105° they combioe to form a single low amplitude
event. K2SK arrives following this group at all three receivers fol-
lowed by the mode converted events K2PSK. A second K2SK event is
identified at receiver 90° at 134.5 psecs. coupled with the first
circumnavigated front diffracted P wave, KPdKIf. The diffracted S
wave, KSde, appears at all three receivers and it displays its
characteristic moveout arriving later as the receiver azimuth
de, is unidenti-
fiable at 75°, but it is identified at 90° and 105°. It also displays

increases. The back diffracted Rayleigh wave, KR

moveout. Finally, KP2“¥ events are observed arriving at receiver 75°
and KP3SK are observed at 90° arriving simultaneocusly. In this
region, the central part of the illuminated zome, more transmitted
waves are observed than in the shadow zone creating a more complicated

signal. The diffracted waves are still observed in this region.

Figures 10a and 10b displays the data for Region IV for which the
source has been moved to a distance of 6R0 from the cylinder and the
receivers are placed on a circular arc of the same radius about the
cylinder at azimuths 120°, 135°, 150° and 160° as shown in Figure 6.
This configuration covers the deep illuminated zone where backscatter-
ing predominates. Reflected acoustic waves, KKrK are the fjrst and
most predominant of the received events in this region. The waveform

is clipped because its amplitude is much greater than the amplitude of
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the remainder of the scatterred and diffracted signal. Very little

diffracted energy is observed in this region. The front diffracted
waves, KPdKf, KSdKf and KRdKf, arrive within the time win-

dow of the KI(r event and are therefore undetectable due to the large
amplitude of the reflected acoustic wave, KK:' The back diffracted
waves are undetected because they are attenuated rapidly and they

arrive in the same time windows as the larger amplitude transmitted

waves.

In Figures 10, the following transmitted waves are identified in

Region IV:

1.) K2PK

2.) KPSK and KSPK, labeled KPSK -

3.) K3FK

4.) KPSPK, KPPSK and KSPPK, labeled K2PSK

5.) KSSK

6.) KPPPSK, KPPSPK, KPSPPK and KSPPPK, labeled K3PSK

7.) K&4PK

8.) K3sK

'9.) KSPSPK, KPSSPK,KSSPPK,KPPSSK and KSPPSK, labeled K2P2SK

10.) KSSPK, KSPSK and KPSSK, labeled KP2SK

Just as the diffracted waves split into two arrivals propagating in

both directions around the cylinder, a similar splitting occurs for
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the transmitted waves. The K3PK event shows a dual arrival at 160°
overlapping each other at 190.5 psecs.. The mode converted waves
K3PK display this phenomenon on all traces with arrivals at 210.8 and
217.6 psecs. at receiver 120°, These dual arrivals become closer
together as the receiver azimuth increases as seen in Figures 10.

This backscattered region contains mostly transmitted waves .

The amplitude spectra of the data have many peaks and troughs
unlike the source wavelet(see Figure 2b). Modulation of the amplitude
spectrum is caused by the multitude of arriving events within the time
window analyzed. The peaks are related to the relative arrival times
between two events The reciprocals of the peak frequencies are the
relative arrival time difference. Having already interpreted the
data, comparison of the spectral peaks to the relative arrivals of the
data is dome. Tables I and II show the correspondence between the
spectral peaks and the relative relative arrival times between events
for the 2d coplanar case at receivers 0° and 5° in the shadow zone.
Figure 29 displays the spectra for receivers 0° and 5° for the data
presented in Tables I and II.

CONCLUSIONS

A three dimensional model experiment has been performed to study
the acoustic-elastic wave scattering and diffraction of a tramsient
acoustic wave emitted from a point source by an infinite elastic cyl-

inder embedded in a fluid medium. This is the first three dimensional
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model experiment using multiple receiver positions throughout all of

the scattering regions. The data verify the existence of KPK, KSK,

K2PK, K2SK, KPSK, KP2SK, K2PSK, K3PK, K3SK, K3PSK, KP3SK, KSPK, K,

£,b 1£ £,b £,b
d d a K KKK

and those transmitted converted waves which have the same number of P

e, k"%, k@ K, ks,P%k, K

and S wave ray segments interior to the cylinder as those stated here.

The verification of the existence of KPdf’bK, stf’bK,
KRdf’bK, Kde’bK, KPdlfK in three dimensions and of
KPdf’bK and stf’bK in two dimensions is accomplished for the

first time. It is also for the first time that all of the diffrac-
tions and all of the transmitted waves have been shown together on the
same data trace so that their interaction could be discerned. By
establishing the existence of the various transmitted and diffracted
waves for a non-coplanar(three dimensiomal) source-receiver configura-
tion, the verification of the helical path traced on the cylindrical
surface by the various as predicted by theory is accomplished. It is
also shown that the diffractions due propagate into the shadow zones
due to the fact that they propagate in all directions around the the
cylinder. Through spectral analysis the spectral maxima are shown to
correspond to the relative arrival time separartion between various
events. The non-abrupt nature of the acoustical shadow boundary is
shown by use of the complex cepstrum. The maximum phase component of
the cepstrum becomes greatly changes in the vicinity of the geometri-
cal shadow boundary. If the geometrical shadow zone is being entered

then the pegative cepstrum becomes more complicated and the terms
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increase in amplitude. However, upon leaving the geometrical shadow
the negative cepstrum decreases in complexity and the amplitude of the
terms decrease also. Envelope detection is employed to determine the
arrival times and the d;ration and the duration of the arriving
events. From the envelope detection method the contamigation of arri-
vals due to overlapping is readily seen. Homomorphic filtering is
used to attempt to remove the wavelet effects and decouple the over-
lapping events, but it does not perform satisfactorily since the con-

tamination is by more than one or even two events in most iustances.
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